• Title/Summary/Keyword: Fault tolerant algorithm

Search Result 152, Processing Time 0.026 seconds

Performance Evaluation of the Field-Oriented Control of Star-Connected 3-Phase Induction Motor Drives under Stator Winding Open-Circuit Faults

  • Jannati, Mohammad;Idris, Nik Rumzi Nik;Aziz, Mohd Junaidi Abdul
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.982-993
    • /
    • 2016
  • A method for the fault-tolerant vector control of star-connected 3-phase Induction Motor (IM) drive systems based on Field-Oriented Control (FOC) is proposed in this paper. This method enables the control of a 3-phase IM in the presence of an open-phase failure in one of its phases without the need for control structure changes to the conventional FOC algorithm. The proposed drive system significantly reduces the speed and torque pulsations caused by an open-phase fault in the stator windings. The performance of the proposed method was verified using MATLAB (M-File) simulation as well experimental tests on a 1.5kW 3-phase IM drive system. This paper experimentally compares the operation of the proposed fault-tolerant vector controller and a conventional vector controller during open-phase fault.

A Fault-tolerant Task Scheduling Algorithm Supporting the Minimum Schedule Length (최소의 스케줄 길이를 유지하는 결함 허용 태스크 스케줄링 알고리즘)

  • Min, Byeong-Jun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1201-1210
    • /
    • 2000
  • In order to tolerate faults which may occur during the execution of distributed tasks in high-performance parallel computer systems, tasks are duplicated on different processors. In this paper, by utilizing the task duplication based scheduling algorithm, a new task scheduling algorithm which duplicates each task on more than two different processors with the minimum schedule length is presented, and the number of processors required for the duplication is analyzed with the ratio of communication cost to computation time and the workload of the system. A simulation with various task graphs reveals that the number of processors required for the full-duplex fault-tolerant task scheduling with the obtainable minimum schedule length increases about 30% to 75% when compared with that of the task duplication based scheduling algorithm.

  • PDF

Fault detection and identification for a robot used in intelligent manufacturing (IMS용 로봇에서의 FDI기법 연구)

  • 이상길;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1489-1492
    • /
    • 1997
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square distribution is applied fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

Fault Detection and Identification for a Robot used in Intelligent Manufacturing (IMS용 로봇의 고장진단기법에 관한 연구)

  • 이상길;송택렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.666-673
    • /
    • 1998
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square test and GLR(General likelihood ratio) test are applied for fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

Fault Tolerant Attitude Control for a Spacecraft Using Reaction Wheels (반작용 휠을 사용하는 인공위성의 내고장 자세제어기법)

  • Jin, Jae-Hyun;Lee, Hun-Gu;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.526-532
    • /
    • 2007
  • This paper considers a fault tolerant control problem for a spacecraft using reaction wheels. Faults are assumed to be inherent to only actuators(reaction wheels) and a control algorithm to accommodate actuators' faults is proposed. An attitude control loop includes an angular velocity control loop. The time delay control method is used to make a spacecraft follow the command angular velocity and to accommodate actuators' faults. A stability condition for the proposed algorithm is derived and the performance is demonstrated by computer simulations.

Fault-Tolerant Control System for Unmanned Aerial Vehicle Using Smart Actuators and Control Allocation (지능형 액추에이터와 제어면 재분배를 이용한 무인항공기 고장대처 제어시스템)

  • Yang, In-Seok;Kim, Ji-Yeon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.967-982
    • /
    • 2011
  • This paper presents a FTNCS (Fault-Tolerant Networked Control System) that can tolerate control surface failure and packet delay/loss in an UAV (Unmanned Aerial Vehicle). The proposed method utilizes the benefits of self-diagnosis by smart actuators along with the control allocation technique. A smart actuator is an intelligent actuation system combined with microprocessors to perform self-diagnosis and bi-directional communications. In the event of failure, the smart actuator provides the system supervisor with a set of actuator condition data. The system supervisor then compensate for the effect of faulty actuators by re-allocating redundant control surfaces based on the provided actuator condition data. In addition to the compensation of faulty actuators, the proposed FTNCS also includes an efficient algorithm to deal with network induced delay/packet loss. The proposed algorithm is based on a Lagrange polynomial interpolation method without any mathematical model of the system. Computer simulations with an UAV show that the proposed FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults and network induced delays.

Fault-Tolerant Driving Control of Independent Steer-by-Wire System for 6WD/6WS Vehicles Using High Slip (고슬립을 이용한 6 륜구동/6 륜조향 차량 고장 안전 주행 제어)

  • Nah, Jae Won;Kim, Won Gun;Yi, Kyongsu;Lee, Jongseok;Lee, Daeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.731-738
    • /
    • 2013
  • This paper describes a fault-tolerant driving control strategy for an independent steer-by-wire system in sixwheel-drive/six-wheel-steering vehicles. An algorithm has been designed to realize vehicle maneuverability that is as close as possible to that of non-faulty vehicles by inducing high slip ratio of the wheel through a faulty steer-by-wire system in order to reduce the lateral tire force, which is resistant to the yaw motion. Considering the transition of the longitudinal tire force of a wheel with a faulty steer-by-wire component, the longitudinal tire forces are optimally distributed to the other wheels. Fault-tolerant driving performance has been investigated via computer simulations. Simulation studies show that the proposed algorithm can significantly improve the maneuverability of a vehicle with a faulty steer-by-wire system as compared to the optimal traction distribution method.

Mastership Passing Algorithm for Train Communication Network Protocol (철도 제어통신 네트워크 프로토콜에서 마스터권한 진달 기법)

  • Seo, Min-Ho;Park, Jae-Hyun;Choi, Young-Joon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.88-95
    • /
    • 2007
  • TCN(Train Communication Network) adopts the master/slave protocol to implement real-time communication. In this network, a fault on the master node, cased by either hardware or software failure, makes the entire communication impossible over TCN. To reduce fault detection and recovery time, this paper propose the contention based mastership transfer algorithm. Slave nodes detect the fault of master node and search next master node using the proposed algorithm. This paper also shows the implementation results of a SoC-based Fault-Tolerant MVB Controller(FT-MVBC) which includes the fault-detect-logic as well as the MVB network logic to verify this algorithm.

Reconfiguration of Redundant Joints for Fault Tolerance of a Servo Manipulator (여유 자유도를 갖는 서보 매니퓰레이터의 내고장 제어를 위한 재형상 기법)

  • 박병석;안성호;윤지섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.899-906
    • /
    • 2004
  • In this paper, fault tolerant algorithm is presented for a servo manipulator system. For fault tolerance of a servo manipulator system, reconfiguration algorithm accommodating a motor's failure has been presented. The algorithm considers a transport's degree of freedoms as redundant joints of a servo manipulator. The reconfiguration algorithm recovers the end effector's motion in spite of one motor's failure A modified pseudo inverse redistribution method has been proposed for the reconfiguration algorithm. Numerical examples and hardware tests have been presented to verify the proposed methods.

Fault-Tolerant Corrective Control for Non-fundamental Mode Faults in Asynchronous Sequential Machines (비동기 순차 머신의 비-기본모드에서 발생하는 고장 극복을 위한 교정 제어)

  • Yang, Jung-Min;Kwak, Seong Woo
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.727-734
    • /
    • 2020
  • Fault tolerant corrective control for asynchronous sequential machines (ASMs) with transient faults is discussed in this paper. The considered ASM is vulnerable to a kind of faults whose manifestation may arise during transient transitions of the ASM, leading to transient faults occurring in non-fundamental mode. To overcome adverse effects caused by these faults, we present a novel corrective control scheme that can detect and tolerate transient faults in non-fundamental mode. The existence condition and design algorithm for an appropriate fault tolerant controller is addressed in the framework of corrective control theory. The applicability of the proposed control methodology is demonstrated in the FPGA experiment.