DOI QR코드

DOI QR Code

Fault-Tolerant Corrective Control for Non-fundamental Mode Faults in Asynchronous Sequential Machines

비동기 순차 머신의 비-기본모드에서 발생하는 고장 극복을 위한 교정 제어

  • Yang, Jung-Min (School of Electronics Engineering, Kyungpook National University) ;
  • Kwak, Seong Woo (Department of Control and Instrumentation Engineering, Pukyong National University)
  • Received : 2020.08.18
  • Accepted : 2020.09.16
  • Published : 2020.09.30

Abstract

Fault tolerant corrective control for asynchronous sequential machines (ASMs) with transient faults is discussed in this paper. The considered ASM is vulnerable to a kind of faults whose manifestation may arise during transient transitions of the ASM, leading to transient faults occurring in non-fundamental mode. To overcome adverse effects caused by these faults, we present a novel corrective control scheme that can detect and tolerate transient faults in non-fundamental mode. The existence condition and design algorithm for an appropriate fault tolerant controller is addressed in the framework of corrective control theory. The applicability of the proposed control methodology is demonstrated in the FPGA experiment.

본 논문은 과도 고장을 가지는 비동기 순차 머신에 대한 내고장성 교정 제어를 다룬다. 본 논문에서 다루는 고장은 머신이 과도 상태 천이를 거칠 때 발현할 수 있으므로 비-기본 모드(non-fundamental mode)에서 원하지 않는 상태 천이를 일으킨다. 본 논문에서는 비동기 순차 머신의 비-기본 모드에서 발생하는 과도 고장을 탐지하고 극복할 수 있는 새로운 내고장성 제어 시스템을 제안한다. 교정 제어 이론의 틀 안에서 내고장성 제어기의 존재 조건과 설계 과정을 제시한다. 또한 제안된 제어 시스템의 효용성을 검증하기 위해 FPGA 실험을 실시한다.

Keywords

References

  1. J. Sparso and S. Furber, Principles of Asynchronous Circuit Design-A Systems Perspective, Boston, MA: Kluwer Academic Publishers, 2002.
  2. I. H. Park, H. K. Lee, and S. J. Kang, "An energy-efficient asynchronous sensor MAC protocol design for wireless sensor networks," Journal of IKEEE, vol.16, no.2, pp.86-94, 2012. DOI: 10.7471/ikeee.2012.16.2.086
  3. E. J. Youn and Y. C. Jang, "A 10-bit 20-MS/s asynchronous SAR ADC using self-calibrating CDAC," Journal of IKEEE, vol.23, no.1, pp.35-43, 2019. DOI: 10.7471/ikeee.2019.23.1.35
  4. T. E. Murphy, X. Geng, and J. Hammer, "On the control of asynchronous machines with races," IEEE Transactions on Automatic Control, vol.48, no.6, pp.1073-1081, 2003. DOI: 10.1109/TAC.2003.812814
  5. N. Venkatraman and J. Hammer, "On the control of asynchronous sequential machines with infinite cycles," International Journal of Control, vol.79, no.7, pp.764-785, 2006. DOI: 10.1080/00207170600665022
  6. J. Peng and J. Hammer, "Input/output control of asynchronous sequential machines with races," International Journal of Control, vol.83, no.1, pp. 125-144, 2010. DOI: 10.1080/00207170903104182
  7. J.-M. Yang and S. W. Kwak, "Fault tolerance in switched ASMs with intermittent faults," IET Control Theory & Applications, vol.11, no.9, pp. 1443-1449, 2017. DOI: 10.1049/iet-cta.2016.1327
  8. J.-M. Yang and S. W. Kwak, "Model matching and fault-tolerant control of switched asynchronous sequential machines with transient faults," IET Control Theory & Applications, vol.13, no.12, pp. 1882-1890, 2019. DOI: 10.1049/iet-cta.2018.6046
  9. J.-M. Yang, "Robust corrective control of asynchronous sequential machines with control input and feedback faults," Automatica, vol.107, pp.605-609, 2019. DOI: 10.1016/j.automatica.2019.06.026
  10. Z. Kohavi and N. K. Jha, Switching and Finite Automata Theory, 3rd ed., Cambridge University Press, Cambridge, UK, 2010.
  11. S. H. Zad, R. H. Kwong, and W. M. Wonham, "Fault diagnosis in discrete event systems: framework and model reduction," IEEE Transactions on Automatic Control, vol.48, no.7, pp.1199-1212, 2003. DOI: 10.1109/TAC.2003.814099
  12. A. A. Ismaeel and R. Bhatnagar, "Test for detection & location of intermittent faults in combinational circuits," IEEE Transactions on Reliability, vol.46, no.2, pp.269-274, 1997. DOI: 10.1109/24.589956