• Title/Summary/Keyword: Fault signal

Search Result 666, Processing Time 0.023 seconds

Detection of Impulse Signal in Noise Using a Minimum Variance Cepstrum-Theory (최소 분산 캡스트럼을 이용한 노이즈속에 묻힌 임펄스 검출방법-이론)

  • 최영철;김양한
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.642-647
    • /
    • 2000
  • Conventional cepstrum has been widely used to detect echo and fault signals embedded in noise. One of the problems of finding impulse signals using the conventional cepstrum in that it is normally very sensitive to signal to noise ratio (SNR). This paper proposes a signal processing method to detect impulse signal in noisy environment. Because the proposed method minimizes the variance of signal power at a cepstrum domain, it is suggested to be called as minimum variance cepstrum (MV cepstrum). Computer simulations have been performed to understand the characteristics of the MV cepstrum. Both mathematical approach and computer simulations confirmed that the MV cepstrum is a useful technique to detect impulse in noisy environment.

  • PDF

Modification of acceleration signal to improve classification performance of valve defects in a linear compressor

  • Kim, Yeon-Woo;Jeong, Wei-Bong
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.71-79
    • /
    • 2019
  • In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.

Compensation of the Secondary Voltage of a Coupling Capacitor Voltage Transformer (CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Lee, Ji-Hoon;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.909-914
    • /
    • 2008
  • A coupling capacitor voltage transformer(CCVT) is used in an extra or ultra high voltage system to obtain the standard low voltage signal for protection. To avoid the phase angle error between the primary and secondary voltages, a tuning reactor is connected between a capacitor and a voltage transformer. The inductance of the reactor is designed based on the power system frequency. If a fault occurs on the power system, the secondary voltage of the CCVT contains some errors due to a dc offset component and harmonic components resulting from the fault. The errors become severe in the case of a close-in fault. This paper proposes an algorithm for compensating the secondary voltage of a CCVT in the time-domain. From the measured secondary voltage of the CCVT, the secondary and primary currents are obtained; then the voltage across the capacitor and the inductor is calculated and then added to the measured secondary voltage to obtain the correct primary voltage. Test results indicate that the proposed algorithm can compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle, and the burden of the CCVT.

Diagnosis of Fault and Abnormal Conditions in a Single-Phase Transformer Using S-parameter Measurement (S파라미터를 이용한 단상 변압기의 이상 상태 진단에 대한 연구)

  • Kim, Jeongeun;Kim, Kwangho;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1344-1352
    • /
    • 2018
  • In this paper, we propose a two-port S-parameter data to diagnose the fault conditions of a single-phase transformer. Using the S-parameters we can measure the reflection and transmission characteristics of signal power at the port of a transformer, which can also be converted into ABCD parameters and Z parameters through a well-known conversion formulas. Transformer fault diagnoses can be performed based on the intuitive and qualitative/quantitative characteristics of the these parameters. In addition, we can obtain wide frequency characteristics at the primary and secondary sides of the transformer, which can be used to get time domain responses using the inverse Fourier transformation with some specific input waveform. In order to verify the effectiveness of the proposed method, the fault conditions were analyzed in simulation and experiment for 3 kVA single phase transformer with 15: 5 turns ratio, and the validity of the proposed method was verified.

The Fire Hazard of Screwed Electric Contacts Due to Mechanical Vibration at Low Voltage Equipment

  • Choi, Chung-Seog;Kim, Young-Seok;Kim, Hyang-Kon
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.18-23
    • /
    • 2005
  • There are many electrical connections in the electric apparatus and most fires due to a fault contact result from a failure or misuse of electric apparatus and installation. The fault contact happens between electrical connections by the loose and the mechanical vibration. In this paper, we have investigated thermal and electrical properties of screwed electric contacts due to the mechanical vibration. The exciter was connected to a signal generator and power amplifier that provided the vibration frequency and amplitude. The vibration, temperature and voltage data were sent to a data acquisition system (DAQ). In the case that fault contact took place, the arc happened between the screwed electric contact and electric wire, heat due to the arc was transmitted to the adjacent insulators, for which the oxide could be generated more. In addition, a spark was generated and the insulator began to melt. Thus, the possibility of electrical fire became the highest in this case. Finally, when the fault contact takes place due to vibration, the hazard of an electric accident is very high.

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.

Development of a Novel Real-Time Monitoring System Algorithm for Fire Prevention (화재예방을 위한 실시간 모니터링 시스템의 알고리즘 개발)

  • Kim, Byeong-Jo;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.47-53
    • /
    • 2014
  • Despite the automatic fire alarm system, according to the national fire data system of national emergency management agency, the fires account for 40,932 incidents, 2,184 injuries and about 430 billion won in property losses in 2013. Since the conventional automatic fire alarm system has several weaknesses related to electrical signal such as noise, surge, lighting, etc. Most fires are mainly caused by electrical faults, mechanical problem, chemical, carelessness and natural. The electrical faults such as line to ground fault, line to line fault, electrical leakage and arc are one of the major problems in fire. This paper describes the development of a novel real-time fire monitoring system algorithm including fault detection function which puts the existing optic smoke and heat detectors for fire detection with current and voltage sensors in order to utility fault monitoring using high accuracy DAQ measurement system with LabVIEW program. The fire detection and electrical fault monitoring with a proposed a new detection algorithm are implemented under several test. The fire detection and monitoring system operates according to the proposed algorithm well.

Active structural control via metaheuristic algorithms considering soil-structure interaction

  • Ulusoy, Serdar;Bekdas, Gebrail;Nigdeli, Sinan Melih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, multi-story structures are actively controlled using metaheuristic algorithms. The soil conditions such as dense, normal and soft soil are considered under near-fault ground motions consisting of two types of impulsive motions called directivity effect (fault normal component) and the flint step (fault parallel component). In the active tendon-controlled structure, Proportional-Integral-Derivative (PID) type controller optimized by the proposed algorithms was used to achieve a control signal and to produce a corresponding control force. As the novelty of the study, the parameters of PID controller were determined by different metaheuristic algorithms to find the best one for seismic structures. These algorithms are flower pollination algorithm (FPA), teaching learning based optimization (TLBO) and Jaya Algorithm (JA). Furthermore, since the influence of time delay on the structural responses is an important issue for active control systems, it should be considered in the optimization process and time domain analyses. The proposed method was applied for a 15-story structural model and the feasible results were found by limiting the maximum control force for the near-fault records defined in FEMA P-695. Finally, it was determined that the active control using metaheuristic algorithms optimally reduced the structural responses and can be applied for the buildings with the soil-structure interaction (SSI).

The Simulation of Transmission Line Fault-Induced Noise Signals. (선로고장시 발생되는 잡음의 시뮬레이션)

  • Shin, Myung-Chul;Kim, Mu-Woong;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.454-456
    • /
    • 1987
  • A more specialized area of transient evaluations is transmission line fault-detecting and protection system. During the first cycle or two following a power system fault, a high-speed protective relay is expected to make a decision as to the severity or location of the fault, usually based on 60 Hz information, i.e. the phase and magnitude of 60 Hz voltage or current signals. It is precisely at this time however that the signal is badly corrupted by noise, in the form of a de offset or frequencies above 50 Hz. One of several possible sources of transients in protection measuring signals is in the primary system for which protection is required in its response to the impact of short circuit fault on-set. Other sources are in the primary voltage and current transducers from which protection signals are derived, and, often of particular importance, in the interface circuits between the transducer secondaries and the comparator and measuring elements of the protection system. However, the noise signals that will be described in this paper are due to the main power system only and do not include errors due to current or voltage transducers.

  • PDF

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.