• 제목/요약/키워드: Fault inception angle

검색결과 20건 처리시간 0.02초

진행파를 이용한 송전선로의 고장점 표정 알고리즘 (A Fault Location Algorithm for a Transmission Line Using Travelling Waves)

  • 강상희;김진한
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권10호
    • /
    • pp.542-549
    • /
    • 2004
  • The conventional fault location algorithms based on the travelling waves have an inherent problem. In cases of the close-up faults occurring near the relaying point and of the faults having zero degree inception angle of voltage signals, the conventional algorithms can not estimate an accurate fault distance. It is because the shapes of travelling waves are near sinusoidal in those cases. A new method solving this problem is presented in this paper. An FIR(Finite Impulse response) filter which makes high frequency components prominent and makes the power frequency component and dc-offset attenuated is used. With this method, the cross-correlation peak is to be very clear when a close-up fault or a fault having near zero-degree inception angle occurs. The cross-correlation peaks can be clearly distinguished and accurate fault location is practically possible consequently. A series of simulation studies using EMTP(Electromagnetic Transients Program) show that the proposed algorithm can calculate an accurate fault distance having maximum 2% or less error.

이산 Daubechies 웨이브릿 변환을 이용한 송전선로의 고장검출 (A Study on Fault Detection for Transmission Line using Discrete Daubechies Wavelet Transform)

  • 이경민;박철원
    • 전기학회논문지P
    • /
    • 제66권1호
    • /
    • pp.27-32
    • /
    • 2017
  • This paper presents a Daubechies wavelet-based fault detection method for fault identification in transmission lines. After the Daubechies wavelet coefficients are calculated, the proposed algorithm has been implemented difference equation using C language. We have modeled a 154kV transmission line using the ATPDraw software and have acquired test data. In order to evaluate effects of DC offset, simulations carried out while varying an inception angle of the voltage $0^{\circ}$, $45^{\circ}$, $90^{\circ}$. For performance evaluation, fault distance was varied. As we can see from the off-line simulation, the proposed algorithm shows rapid and accurate fault detection. Also we can see the proposed algorithm is not affected by the fault inception angle change.

비대칭 고장전류 저감 기능을 갖는 초전도 한류기의 최적 저항 결정 방안 (A Decision Method for the Optimal Insertion Resistance of a Superconducting Fault Current Limiter with Reduction of an Asymmetric Fault Current)

  • 김창환;김규호;이상봉
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.57-63
    • /
    • 2015
  • Fault currents characteristics contain decaying DC offset. First cycle peak value of fault currents is higher than steady-state fault current value. These characteristics can affect the operation of protective device. To reduce the asymmetric fault current, the method using a series connection of two hybrid-type Superconducting Fault Current Limiter(SFCL) components, an auxiliary SFCL and a main SFCL, has been proposed. The auxiliary SFCL limits the first half cycle fault current, while main SFCL limits the steady state fault currents. This paper proposed a decision method of the optimal insertion resistance of auxiliary and main SFCL components. To verify the effectiveness of proposed scheme, the various simulations are performed by using Electromagnetic Transient Program(EMTP).

SWT와 진행파를 이용한 지중송전계통 고장점 추정 기법 개발 (Development of Fault Location Method Using SWT and Travelling Wave on Underground Power Cable Systems)

  • 정채균;이종범
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.184-190
    • /
    • 2008
  • The fault location algorithm based on stationary wavelet transform was developed to locate the fault point more accurately. The stationary wavelet transform(SWT) was introduced instead of conventional discrete wavelet transform(DWT) because SWT has redundancy properties which is more useful in noise signal processing. In previous paper, noise cancellation technique based on the correlation of wavelet coefficients at multi-scales was introduced, and the efficiency was also proved in full. In this paper, fault section discrimination and fault location algorithm using noise cancellation technique were tested by ATP simulation on real power cable systems. From these results, the fault can be located even in very difficult and complicated situations such as different inception angle and fault resistance.

웨이블렛을 이용한 지중송전계통 고장검출 및 노이즈 제거 알고리즘 개발 (Development of Fault Detection and Noise Cancellation Algorithm Using Wavelet Transform on Underground Power Cable Systems)

  • 정채균;이종범
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1191-1198
    • /
    • 2007
  • In this paper, the fault detection and noise cancellation algorithm based on wavelet transform was developed to locate the fault more accurately. Specially, noise cancellation algorithm was based on the correlation of wavelet coefficients at multi-scales. Fault detection, classification and location algorithm were tested by EMTP simulation on real power cable system. From these results, the faults can be detected and located even in very difficult situations, such as at different inception angle and fault resistance.

노이지 제거기법을 이용한 지중송전계통 고장점 추정 (Fault Location Using Noise Cancellation Technique on Underground Power Cable Systems)

  • 정채균;이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.440-441
    • /
    • 2006
  • The fault location algorithm based on wavelet transform was developed to locate the fault more accuracy after the operation of relay. The stationary wavelet transform(SWT) was introduced instead of conventional discrete wavelet transform(DWT) because SWT has redundancy properties which is more useful in noise signal processing. The algorithm was based on the correlation of wavelet coefficients at multi-scales. Fault location algorithm was tested by simulation on real power cable system. From these results, the fault can be located even in very difficult situations, such as at different inception angle and fault resistance.

  • PDF

3권선 CCVT의 2차 전압 보상 방법 (Compensation of the Secondary Voltage of a Three Winding Coupling Capacitor Voltage Transformer)

  • 강용철;김연희;정태영;장성일;김용균
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.938-943
    • /
    • 2008
  • Coupling capacitor voltage transformers(CCVTs) have been used in extra or ultra high voltage systems to obtain the standard low voltage signal for protection and measurement. For fast suppression of the phenomenon of ferroresonance, three winding CCVTs are used instead of two winding CCVTs. A tuning reactor is connected between a capacitor voltage divider and a voltage transformer to reduce the phase angle difference between the primary and secondary voltages in the steady state. Slight distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has significant errors due to the transient components such as dc offset component and/or high frequency components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of a three winding CCVT in the time domain. With the values of the measured secondary voltage of the three winding CCVT, the secondary, tertiary and primary currents and voltages are estimated; then the voltages across the capacitor and the tuning reactor are calculated and then added to the measured voltage. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the three winding CCVT irrespective of the fault distance, the fault impedance and the fault inception angle as well as in the steady state.

CCVT의 2차 전압 보상 방법 (Compensation of the Secondary Voltage of a Coupling Capacitor Voltage Transformer)

  • 강용철;정태영;이지훈;장성일;김용균
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.909-914
    • /
    • 2008
  • A coupling capacitor voltage transformer(CCVT) is used in an extra or ultra high voltage system to obtain the standard low voltage signal for protection. To avoid the phase angle error between the primary and secondary voltages, a tuning reactor is connected between a capacitor and a voltage transformer. The inductance of the reactor is designed based on the power system frequency. If a fault occurs on the power system, the secondary voltage of the CCVT contains some errors due to a dc offset component and harmonic components resulting from the fault. The errors become severe in the case of a close-in fault. This paper proposes an algorithm for compensating the secondary voltage of a CCVT in the time-domain. From the measured secondary voltage of the CCVT, the secondary and primary currents are obtained; then the voltage across the capacitor and the inductor is calculated and then added to the measured secondary voltage to obtain the correct primary voltage. Test results indicate that the proposed algorithm can compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle, and the burden of the CCVT.

진행파를 이용한 근접사고 거리계전 방식 (Travelling Wave Technique for Close-Up Fault Protection)

  • 김곤욱;강상희;박종근;김일동;윤만철;권욱현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.202-205
    • /
    • 1990
  • In this paper the development of new technique based on the travelling-wave information contained in the post fault voltage and current signals has been presented. To develop fault location methods which can cope with close-up fault and zero-inception angle problems, magnitude of the backward wave has been used. The technique developed can be incorporated in a generalized algorithm for application as a high speed distance scheme. In this way some of the problems and limitations associated with travelling wave schemes are avoided. Verification of the relay operating principles is presented through digital computer numerical simulation using an electromagnetic transient program(EMTP) in conjunction with simulation of the proposed algorithms.

  • PDF

진행파 기법을 이용한 새로운 초고속 거리계전 방식 (A New Ultra High Speed Distance Relaying Method Using Travelling Wave Technique)

  • 강상희;박종근
    • 대한전기학회논문지
    • /
    • 제40권12호
    • /
    • pp.1203-1210
    • /
    • 1991
  • This paper proposes a new distance relaying method based on fault initiated travelling waves for transmission line protection. The characteristics of this method are ultra high speed and excellent sensitivity. Travelling wave technique which is one of the distance relaying methods uses the discrete cross correlation function for discrimination between internal and external fault is remarkably reduced in case of a close up fault and an inception angle near or equal to zero fault. To cope with this problem, a new fast algorithm which uses backward wave summation method with fixed window is presented. The proposed method has been tested by numerical simulations using the EMTP.

  • PDF