• Title/Summary/Keyword: Fault displacement

Search Result 172, Processing Time 0.02 seconds

Trench Survey and Fault Displacement at Cheonbuk-myon Area along the Northern Part of Ulsan Fault System (울산단층계 북부 천북면 일대의 트렌치 조사와 단층변위)

  • 경재복
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.235-240
    • /
    • 1998
  • Quaternary fault movement of the Ulsan fault system was interpreted by aenal photograph, field survey and trench excavation. The geomorphological evidences associated with active fault are clearly shown at Cheonbuk-myeon area, northern part of Ulsan fault system. In the trench wall one reverse fault(N 50$^{\circ}$E, 70$^{\circ}$E) is identified between basement rock (Miocene mudstone) and gravel deposits Another thrust fault (NS) extends up to the red and light brown soil layers. Middle terrace surface shows cumulative vertical displacements of about 3 to 7 m. The horizontai displacement of the red soil by faulting event is about 1.8 to 2.4m. The age of the fault activity is younger than that of the soil layer, which is roughly estimated to be late Quaternary (about 100Ka)

  • PDF

Prediction of Fault Zone ahead of Tunnel Face Using Longitudinal Displacement Measured on Tunnel Face (터널 굴진면 수평변위를 이용한 굴진면 전방의 단층대 예측)

  • Song, Gyu-Jin;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • We conducted three-dimensional finite element analysis to predict the presence of upcoming fault zones during tunneling. The analysis considered longitudinal displacements measured at tunnel face, and used 28 numerical models with various fault attitudes. The x-MR (moving range) control chart was used to analyze quantitatively the effects of faults distributed ahead of the tunnel face, given the occurrence of a longitudinal displacement. The numerical models with fault were classified as fault gouge, fault breccia, and fault damage zones. The width of fault cores was set to 1 m (fault gouge 0.5 m and fault breccia 0.5 m) and the width of fault damage zones was set to 2 m. The results, suggest that fault centers could be predicted at 2~26 m ahead of the tunnel face and that faults could be predicted earliest in the 45° dip model. In addition, faults could be predicted earliest when the angle between the direction of tunnel advance and the strike of the fault was smallest.

3-Dimensional Tunnel Analyses for the Prediction of Fault Zones (파쇄대 예측을 위한 터널의 3차원 수치해석)

  • 이인모;김돈희;이석원;박영진;안형준
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.99-112
    • /
    • 1999
  • When there exists a fault zone ahead of the tunnel face and a tunnel is excavated without perceiving its existence, it will cause stress concentration in the region between the tunnel face and the fault zone because of the influence of the fault zone on the arching phenomena. Because the underground structure has many unreliable factors in the design stage, the prediction of a fault zone ahead of the tunnel face by monitoring plans during tunnel construction and the rapid establishment of appropriate support system are required for more economical and safer tunnel construction. Recent study shows that longitudinal displacement changes during excavation due to the change of rock property, and if longitudinal displacement and settlement, which are measured in the field, are considered together in displacement analysis, the prediction of change in rock mass property is possible. This study provided the method for the prediction of fault zones by analyzing the changes of L/C and (Ll-Lr)/C ratio (L= longitudinal displacement at crown, C = settlement at crown, Ll = longitudinal displacement at left sidewall, Lr = longitudinal displacement at right sidewall) and the stereographic projection of displacement vectors which were obtained from the 3-D numerical analysis of hybrid method in various initial stress conditions.

  • PDF

Investigating the Stress on Fault Plane Associated with Fault Slip Using Boundary Element Method (경계요소법을 이용한 단층 슬립에 따른 단층면 응력에 관한 연구)

  • Sung Kwon, Ahn;Hee Up, Lee;Jeongjun, Park;Mintaek, Yoo
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.598-610
    • /
    • 2022
  • Avoiding a fault zone would be a best practice for safety in underground construction, which is only sometimes possible because of many restrictions and other field conditions. For instance, there is an ongoing conception of Korea-Japan subsea tunnels that inevitably cross a massive fault system in the Korea Strait. Therefore it was deemed necessary to find an efficient way of predicting the likely behaviour of underground structures under fault slip. This paper presents the findings from simple numerical analysis for investigating the stress induced at a normal fault with a dip of 45 degrees. We used a boundary element software that assumed constant displacement discontinuity, which allowed the displacement to be estimated separately at both the fault's hangingwall and footwall sides. The results suggested that a principal stress rotation of 45 degrees occurred at the edges of the fault during the slip, which was in agreement with the phenomenon for fault plane suggested in the body of literature. A simple numerical procedure presented in this paper could be adopted to investigate other fault-related issues associated with underground structure construction.

3D Finite Element Analysis of Fault Displacements in the Nobi Fault Zone, Japan

  • Choi, Young-Mook;Kim, Woo-Seok;Lee, Chul-Goo;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.323-332
    • /
    • 2014
  • The Nobi fault zone, which generated the 1891 Nobi Earthquake (M8.0), includes five or six faults distributed in and around Gifu and Aichi prefectures, Japan. Because large cities are located near the fault zone (e.g., Gifu and Nagoya), and because the zone will likely be reactivated in the future, relatively thorough surveys have been conducted on the 1891 Nobi earthquake event, examining the fault geometry, house collapse rate, and the magnitude and distribution of earthquake intensity and fault displacement. In this study, we calculated the earthquake slip along faults in the Nobi fault zone by applying a 3D numerical analysis. The analysis shows that a zone with slip displacements of up to 100 mm included all areas with house collapse rates of 100%. In addition, the maximum vertical displacement was approximately ${\pm}1700mm$, which is in agreement with the ${\pm}1400mm$ or greater vertical displacements obtained in previous studies. The analysis yielded a fault zone with slip displacements of > 30 mm that is coincident with areas in which house collapse rates were 60% of more. The analysis shows that the regional slip sense was coincident with areas of uplift and subsidence caused by the Nobi earthquake.

Prediction of a Fault Zone ahead of a Tunnel Face based on the Orientation of Displacement Vectors (변위벡터방향성을 이용한 터널 전방 단층대 예측에 관한 연구)

  • Kim, Kwang-Yeom;Yim, Sung-Bin;Kim, Jang-Kyeom;Seo, Yong-Seok;Kim, Jin-Woung
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.371-380
    • /
    • 2010
  • A three-dimensional finite element analysis was performed to predict the location of a fault zone ahead of a tunnel face based on convergence displacement. Geometrical models for the numerical analysis were developed based on the possible geometric intersection between the fault zone and the tunnel. Fifteen fault models were generated from combinations of faults with five different strikes (at $15^{\circ}$ intervals) and three dips (vertical, $45^{\circ}$ and $-45^{\circ}$) relative to the tunnel route. The displacements on the crown and side walls were calculated and analyzed using a vector orientation approach. As a result, nine representative prediction charts were developed, showing location and orientation of the fault zone based on convergence displacement.

Dynamic response of post-tensioned rocking wall-moment frames under near-fault ground excitation

  • Feng, Ruoyu;Chen, Ying;Cui, Guozhi
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.243-251
    • /
    • 2018
  • The dynamic responses of a rocking wall-moment frame (RWMF) with a post-tensioned cable are investigated. The nonlinear equations of motions are developed, which can be categorized as a single-degree-of-freedom (SDOF) model. The model is validated through comparison of the rocking response of the rigid rocking wall (RRW) and displacement of the moment frame (MF) against that obtained from Finite Element analysis when subjected ground motion excitation. A comprehensive parametric analysis is carried out to determine the seismic performance factors of the RWMF systems under near-fault trigonometric pulse excitation. The horizontal displacement of the RWMF system is compared with that of MF structures without RRW, revealing the damping effect of the RRW. Frame displacement spectra excited by trigonometric pulses and recorded earthquake ground motions are constructed. The effects of pulse type, mass ratio, frame stiffness, and wall slenderness variations on the displacement spectra are presented. The paper shows that the coupling with a RRW has mixed results on suppressing the maximum displacement response of the frame.

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

A Study on Behaviour of Tunnel Considering the Location of Groundwater Leaching and Fault Fracture Zone under Tunnel Construction (지하수 용출과 단층파쇄 위치에 따른 터널 거동 연구)

  • Son, Yongmin;Kim, Nagyoung;Min, Kyungjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.37-43
    • /
    • 2015
  • Ground characteristics is important in tunnel structure utilizing the strength of underground. In the case of the fault fracture zone such as weak soil conditions exists in the tunnel section and groundwater leaching occurs at the same time, it happens to occur to excessive displacement or collapse of tunnel frequently. Fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel under construction. Behavior of fault fracture zone is determined depending on the size and orientation of the surface portion of the tunnel. If the groundwater occurs in the face of tunnel, groundwater causes displacement and collapse. And the collapse characteristics of tunnel is a major factor in determining that the time-dependent behavior. It is difficult to accurately predict groundwater leaching from the fault fracture zone in the numerical analysis method and analyze the interaction behavior of groundwater and fault fracture zone. Therefore numerical analysis method has limitations the analysis of ground water in the ground which the fault fracture zone and groundwater occurs at the same time. It is required to comprehensively predict the behavior of tunnel and case studies of tunnel construction. Thus, the location of fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel. In this study, behavior characteristics of the tunnel according to the location of the fault fracture was analyzed.