• 제목/요약/키워드: Fault current limiters

검색결과 128건 처리시간 0.031초

루프화 배전계통에 초전도 한류기 적용에 따른 Recloser-Fuse 보호협조 분석 (Analysis on Recloser-Fuse Coordination in Loop Power Distribution System with Superconducting Fault Current Limiters)

  • 최규완;김수환;문종필
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.111-115
    • /
    • 2015
  • Recently, protection coordination issues can occur due to increased fault current in power system when power system being changed radial power system to grid system such as loop power system, micro grid and smart grid. This paper analyzed Recloser-Fuse coordination in loop power distribution system with Superconducting Fault Current Limiters(SFCLs) when single line ground fault occur in loop power distribution system with SFCLs. We analyzed Recloser-Fuse Coordination in radial power distribution system and changed coordination caused by increased Fault current because of loop system when single line ground fault occur in power distribution system. This paper simulated to improve changed coordination using SFCLs in loop power distribution system. Power distribution system, SFCLs and protective devices are modeled using PSCAD/EMTDC.

시뮬레이션을 이용한 하이브리드 초전도 전류제한기의 반주기 후 한류 방식 분석 (Analysis on the Limiting Method after Half Cycle of Hybrid Superconducting Fault Current Limiter using Simulation)

  • 안재민;김진석;문종필;임성훈;김재철;현옥배;설규환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.63-64
    • /
    • 2008
  • The increase of fault current due to large demand has caused the capacity of power machines in power grid to increase. To protect the power system effectively from the large fault current, several superconducting fault current limiters have been proposed. however, in order to apply superconducting fault current limiters into power system, there are many problems such as cost, recovery, AC loss, and cryogenic. In order to solve these problems, hybrid superconducting fault current limiter(HSFCL) was proposed. However, HSFCL also has a problem that is protective coordination in distribution system with HFSCL. In this paper, HSFCL limiting after half cycle modeled and analyzed about protective coordination.

  • PDF

전력계통 고장전류 저감을 위한 한류기술 및 초전도 저항형 한류기 개발 동향 분석

  • 이방욱;강종성;박권배;오일성
    • 한국초전도저온공학회지:초전도와저온공학
    • /
    • 제5권1호
    • /
    • pp.10-17
    • /
    • 2003
  • For limitation and interruption of short circuit currents from low voltage to extra high voltage applications, the electrical equipment including fuses and circuit breakers, are widely used today. But in order to anticipate increasing needs for effective and competitive device for limiting the growing fault current in electrical power systems, fault current limitation technologies and fault current limitation devices are widely introduced and investigated in these days. Furthermore, the applications of high temperature superconducting materials (HTSC) into the current limiting devices are new approach for developing of novel and effective col-rent limitation electrical equipment. In this research, the necessities of current limitation technology and the developed and developing current limitation devices for power systems are introduced. Finally, the investigation of resistive type fault current limiters which is under development by LG and KEPCO were introduced.

  • PDF

EMTCD를 이용한 154kV 송전계통에서의 초전도 한류기 적용 해석 (Application Analysis of a Resistive type SFCL for Transmission Systems)

  • 허태전;배형택;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.409-411
    • /
    • 2004
  • The need for Fault Current Limiters (FCL) is associated with the continuous growth and interconnection of modem power systems and increase in dispersed generation facilities, which result in progressive increase in the short circuit capacity far beyond their original design capacity. Fault Current Limiters (FCL) clips the fault currents and reduces the electromechanical stresses on the network and the need to handle excessive fault currents. In addition, the reduction of the fault duration Provided by the limiter should increase the power transmission capability and improve the dynamic stability. This paper proposes the model of resistive type superconducting fault current limiter using EMTDC(Electromagnetic transients for DC analysis program). In order to verify the effectiveness of the SFCL, in this paper, the analysis of fault current in a transmission system through the EMTDC based simulation by using the modeled component of a resistive type SFCL is peformed and the detailed results are given.

  • PDF

Quench properties of superconducting fault current limiters connected in parallel

  • Kim, Hye-Rim;Park, Hyo-Sang;Park, Kwon-Bae;Hyun, Ok-Bae;Hwang, Si-Dole
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.224-228
    • /
    • 2002
  • We investigated the quench properties of superconducting fault current limiters (SFCLs) connected in parallel. It was carried out as an effort to scale up the current capacity of SFCL toys texts. SFCLs were based on $YBa_2$$Cu_3$$O_{7}$ films coated in-situ with a gold layer and fabricated by patterning the films into 2 mm wide and 42 cm long meander lines by photolithography. Two SFCLS were connected in parallel and tested with simulated AC fault currents. Initially the current was divided unequally into branches of parallel connection due to unequal resistance of the branches. However, once quench started in the SFCLs, the current oscillated between the branches and then was distributed nearly equally between the branches. In other words, the elements quenched simultaneously. The oscillation amplitude decreased as the source voltage was increased: the oscillation was the most prominent near the quench current. The observed oscillation and the consequent simultaneous quench was understood in terms of quench start and development in the SFCLs.

  • PDF

리액터의 권선수에 따른 매트릭스형 한류기 최적화 설계 (Optimal Design of Matrix-type SFCLs According to Turn Number of Reactors)

  • 정동철
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1944-1947
    • /
    • 2012
  • In this work, we investigated quench characteristics of matrix-type superconducting fault current limiters (MFCLs) according to the turn number of reactors. The reactors used in MFCLs apply magnetic field to superconducting elements within reactors when fault currents surge into MFCL systems. It makes the fast and simultaneous quenches between superconducting elements. Also reactors decrease the fault power burden of superconducting elements by bypassing the partial fault currents to itself, when quench occurs. These structure proposed in this work can be expected to achieve much more current limiting capacity even though it uses less superconductors compared with other type SFCLs. Three reactors were made by Bakelite. These reactors with the turn number of 190, 380 and 570, had the length of 270 mm and diameter of 80 mm. We reported experimental results, including fault currents, fault voltages and resistance in superconducting elements according to the turn number of reactors. We confirmed that experimental results will be useful in next future plan for the real power grid.

1선 지락사고에 대한 초전도한류기의 불평형 특성 (Unbalanced Characteristics of the Superconducting Fault Current Limiters with a Single Line-to-ground Fault)

  • 최효상;이나영;이상일
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.851-855
    • /
    • 2005
  • We investigated the unbalanced characteristics of the superconducting fault current limiters (SFCLs) based on YBCO thin films with a single line-to-ground fault. When a single line-to-ground fault occurred, the short circuit current of a fault phase increased about 6 times of transport currents after the fault onset but was effectively limited to the designed current level within 2 ms by the resistance development of the SFCL. The fault currents of the sound phases almost did not change because of their direct grounding system. The unbalanced rates of a fault phase were distributed from 6.4 to 1.4. It was found that the unbalanced rates of currents were noticeably improved within one cycle after the fault onset. We calculated the zero phase currents for a single line-to-ground fault using the balanced component analysis. The positive sequence resistance was reduced remarkably right after the fault onset but eventually approached the balanced positive resistance component prior to the system fault. This means that the system reaches almost the three-phase balanced state in about 60 ms after the fault onset at the three-phase system.

배전계통 초전도 한류기 동작특성에 따른 계통 영향 분석 (System Effects by Operation Characteristics of Superconducting Fault Current Limiters in Distribution Systems)

  • 이상봉;김철환;김규호;김재철;현옥배
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1135-1140
    • /
    • 2008
  • Superconducting fault current limiters (SFCL) have been progressing due to the development of superconducting technology. The resistor type SFCL is one of the promising current limiting devices in power system for its effective operation. For proper application and operation of a SFCL, the prior investigation of fundamental characteristics and its effects to the distribution systems are needed. The most important current limiting behavior of a SFCL is dominated by quenching and recovery characteristics. In this paper, the resistive type SFCL was developed by using EMTP/ATPDraw and MODELS language. The operating characteristics and current limiting behaviors of the SFCL in distribution systems have been simulated and investigated.

나선형태로 제작된 고온초전도 한류기의 특성해석 (Characterization of the Spiral Type Fault Current Limiters Using High-$T_c$ Superconducting Thin Films)

  • 정동철;박성진;강형곤;최효상;곽민환;임해용;황종선;최명호;추철원
    • 한국전기전자재료학회논문지
    • /
    • 제14권6호
    • /
    • pp.518-524
    • /
    • 2001
  • We report the current limiting properties of superconducting fault current limiters (SFCL). Our SFCL was patterned in a spiral type on a YB $a_2$C $u_3$$O_{7-x}$(YBCO) film deposited using rf sputtering techniques and was coated with a gold shunt layer in order to disperse the heat generated at hot spots in the YBCO film. Current increased up to 13.5 $A_{peak}$ at 60 Hz for the voltage of 13 $V_{peak}$, which is the minimum quench point, and increased up to 17.6 $A_{peak}$ at 60 Hz fo the voltage fo 141.4 $V_{peak}$. The quench completion time was 5 msec at 13 $V_{peak}$ and 4 msec at 141. $V_{peak}$ respectively. we think that this architecture using spiral-type SFCL can be useful for the protection of the power delivery systems from fault currents.s. currents.s.

  • PDF