• Title/Summary/Keyword: Fault Tree

Search Result 449, Processing Time 0.029 seconds

Dynamic reliability analysis framework using fault tree and dynamic Bayesian network: A case study of NPP

  • Mamdikar, Mohan Rao;Kumar, Vinay;Singh, Pooja
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1213-1220
    • /
    • 2022
  • The Emergency Diesel Generator (EDG) is a critical and essential part of the Nuclear Power Plant (NPP). Due to past catastrophic disasters, critical systems of NPP like EDG are designed to meet high dependability requirements. Therefore, we propose a framework for the dynamic reliability assessment using the Fault Tree and the Dynamic Bayesian Network. In this framework, the information of the component's failure probability is updated based on observed data. The framework is powerful to perform qualitative as well as quantitative analysis of the system. The validity of the framework is done by applying it on several NPP systems.

Fault Diagnosis of Induction Motors using Decision Trees (결정목을 이용한 유도전동기 결함진단)

  • Tran Van Tung;Yang Bo-Suk;Oh Myung-Suck
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.407-410
    • /
    • 2006
  • Decision tree is one of the most effective and widely used methods for building classification model. Researchers from various disciplines such as statistics, machine teaming, pattern recognition, and data mining have considered the decision tree method as an effective solution to their field problems. In this paper, an application of decision tree method to classify the faults of induction motors is proposed. The original data from experiment is dealt with feature calculation to get the useful information as attributes. These data are then assigned the classes which are based on our experience before becoming data inputs for decision tree. The total 9 classes are defined. An implementation of decision tree written in Matlab is used for four data sets with good performance results

  • PDF

FTA of Leakage Path in Subsea X-mas Tree System (해저 유정 제어 시스템에서의 누수 경로 FTA 분석)

  • Yoo, Won-Woo;Park, Min-Sun;Yang, Young-Soon;Ruy, Won-Sun;Jang, Beom-Seon
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.85-90
    • /
    • 2013
  • The growing need for energy (oil and gas) has led to offshore resource development. As a reflection of this trend, there have been many advances in the technologies used for the subsea production systems that make offshore resource development possible. As the technologies for subsea production systems continue to grow, a subsea X-mas tree, the core equipment in a subsea production system, is required to have more functions than before. Generally, these complex functions lead to a change in its configuration. Therefore, this paper investigates a change in a subsea X-mas tree system to enhance system understanding, and conducts a leakage path analysis of a subsea X-mas tree system. Utilizing the recent configuration of the subsea X-mas tree, an identification of the leakage path and a quantitative risk analysis for the leakage using an FTA (fault tree analysis) are conducted.

The Study on the Lifetime Estimation using Fault Tree Analysis in Design Process of LNG Compressor (천연가스 압축기 설계 단계에서 FTA를 이용한 수명 예측 연구)

  • Han, Yongshik;Do, Kyu Hyung;Kim, Taehoon;Kim, Myungbae;Choi, Byungil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.192-198
    • /
    • 2015
  • Fault Tree Analysis to predict the lifetime in the design process of LNG compressor is considered. Fault Trees for P & ID of the compressor are created. Individual components that comprise the compressor are configured with the basic event. The failure rates in the PDS and OREDA are applied. As results, the system failure rate and the reliability over time are obtained. Further, the power transmission and the shaft seal system is confirmed to confidentially importantly contribute to the overall lifetime of the system. These techniques will help to improve the reliability of design of large scale machinery such as a plant.

FMECA using Fault Tree Analysis (FTA) and Fuzzy Logic (결함수분석법과 퍼지논리를 이용한 FMECA 평가)

  • Kim, Dong-Jin;Shin, Jun-Seok;Kim, Hyung-Jun;Kim, Jin-O;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1529-1532
    • /
    • 2007
  • Failure Mode, Effects, and Criticality Analysis (FMECA) is an extension of FMEA which includes a criticality analysis. The criticality analysis is used to chart the probability of failure modes against the severity of their consequences. The result highlights failure modes with relatively high probability and severity of consequences, allowing remedial effort to be directed where it will produce the greatest value. However, there are several limitations. Measuring severity of failure consequences is subjective and linguistic. Since The result of FMECA only gives qualitative and quantitative informations, it should be re-analysed to prioritize critical units. Fuzzy set theory has been introduced by Lotfi A. Zadeh (1965). It has extended the classical set theory dramatically. Based on fuzzy set theory, fuzzy logic has been developed employing human reasoning process. IF-THEN fuzzy rule based assessment approach can model the expert's decision logic appropriately. Fault tree analysis (FTA) is one of most common fault modeling techniques. It is widely used in many fields practically. In this paper, a simple fault tree analysis is proposed to measure the severity of components. Fuzzy rule based assessment method interprets linguistic variables for determination of critical unit priorities. An rail-way transforming system is analysed to describe the proposed method.

  • PDF

Evaluation of Uncertainty Importance Measure in Fault Tree Analysis (결점나무 분석에서 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun;Jeong, Seok-Chan
    • The Journal of Information Systems
    • /
    • v.17 no.3
    • /
    • pp.25-37
    • /
    • 2008
  • In a fault tree analysis, an uncertainty importance measure is often used to assess how much uncertainty of the top event probability (Q) is attributable to the uncertainty of a basic event probability ($q_i$), and thus, to identify those basic events whose uncertainties need to be reduced to effectively reduce the uncertainty of Q. For evaluating the measures suggested by many authors which assess a percentage change in the variance V of Q with respect to unit percentage change in the variance $v_i$ of $q_i$, V and ${\partial}V/{\partial}v_i$ need to be estimated analytically or by Monte Carlo simulation. However, it is very complicated to analytically compute V and ${\partial}V/{\partial}v_i$ for large-sized fault trees, and difficult to estimate them in a robust manner by Monte Carlo simulation. In this paper, we propose a method for evaluating the measure using discretization technique and Monte Carlo simulation. The proposed method provides a stable uncertainty importance of each basic event.

AN OVERVIEW OF RISK QUANTIFICATION ISSUES FOR DIGITALIZED NUCLEAR POWER PLANTS USING A STATIC FAULT TREE

  • Kang, Hyun-Gook;Kim, Man-Cheol;Lee, Seung-Jun;Lee, Ho-Jung;Eom, Heung-Seop;Choi, Jong-Gyun;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.849-858
    • /
    • 2009
  • Risk caused by safety-critical instrumentation and control (I&C) systems considerably affects overall plant risk. As digitalization of safety-critical systems in nuclear power plants progresses, a risk model of a digitalized safety system is required and must be included in a plant safety model in order to assess this risk effect on the plant. Unique features of a digital system cause some challenges in risk modeling. This article aims at providing an overview of the issues related to the development of a static fault-tree-based risk model. We categorize the complicated issues of digital system probabilistic risk assessment (PRA) into four groups based on their characteristics: hardware module issues, software issues, system issues, and safety function issues. Quantification of the effect of these issues dominates the quality of a developed risk model. Recent research activities for addressing various issues, such as the modeling framework of a software-based system, the software failure probability and the fault coverage of a self monitoring mechanism, are discussed. Although these issues are interrelated and affect each other, the categorized and systematic approach suggested here will provide a proper insight for analyzing risk from a digital system.

Reliability analysis of nuclear safety-class DCS based on T-S fuzzy fault tree and Bayesian network

  • Xu Zhang;Zhiguang Deng;Yifan Jian;Qichang Huang;Hao Peng;Quan Ma
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1901-1910
    • /
    • 2023
  • The safety-class (1E) digital control system (DCS) of nuclear power plant characterized structural multiple redundancies, therefore, it is important to quantitatively evaluate the reliability of DCS in different degree of backup loss. In this paper, a reliability evaluation model based on T-S fuzzy fault tree (FT) is proposed for 1E DCS of nuclear power plant, in which the connection relationship between components is described by T-S fuzzy gates. Specifically, an output rejection control system is chosen as an example, based on the T-S fuzzy FT model, the key indicators such as probabilistic importance are calculated, and for a further discussion, the T-S fuzzy FT model is transformed into Bayesian Network(BN) equivalently, and the fault diagnosis based on probabilistic analysis is accomplished. Combined with the analysis of actual objects, the effectiveness of proposed method is proved.

The Comparative Quantitative Risk Assessment of LNG Tank Designs for the Safety Improvement of Above Ground Membrane Tank (지상식 멤브레인 LNG저장탱크 안전성 향상을 위한 설계형식별 정량적 위험성 비교 평가)

  • Lee S.R.;Kwon B.G.;Lee S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.57-61
    • /
    • 2005
  • The objective of paper is to carry out a comparative Quantitative Risk Assessment (QRA) of two KOGAS tank designs using a fault tree methodology, a standard 'Full Containment' tank and a 'Membrane' tank. For the membrane tank, both the initial KOGAS design and 4 modified KOGAS designs have been assessed, giving six separate cases. In this paper, the frequencies of releases are quantified using a fault tree approach. For clarity in the analysis, and to ensure consistency, all cases have been quantified using the same fault tree. Logic within the fault tree is used to select each of the cases. Full quantification of risks is often difficult, owing to a lack of relevant failure data, but the aim of this study has been to be as quantitative as possible, with full transparency of failure information. The most significant general cause of external LNG leaks is predicted to be a seismic event, which has been quantified nominally. 4modified KOGAS desiens to Prevent damage of bottom membrane panels that was shown in preparatory estimation could quantitively confirm safety improvement. According to result, the predicted frequencies of an external LNG leak for the full containment and modified membrane tanks are very similar, failures due to dropped pumps are predicted to be significantly greater for the membrane tank with thickened plate than for the full containment tank.

  • PDF

Minimal Cut Set of Electric Power Installations using Fault Tree Analysis (FTA를 이용한 수변전설비의 최소절단집합 도출)

  • Park, Young-Ho;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • In this paper, from making an electrical fire which is thought to be the most damaging among potential dangers as a top event, minimal cut sets (MCS) about it were analyzed. For this, components of a power substation were classified into 15 items. Failure rates and modes were extracted based on Korea Electrical Safety Corporation, IEEE Gold Book, and RAC. To analyze the top event (an electrical fire), main events were assorted into "safety devices for overcurrent" and "ampere meter of detecter". Failure of components was divided into failure of VCB, COS, and MCCB. A fault tree was composed of 3 AND gate, 5 OR gates and 17 basic events. Overlapped events among the basic events are things which occur from relevant components. They were attached to the tree by distinguishing identifiers. In case of FT, two minimal cut sets of "IO_METER", "MF_METER", "DO_MCCB" and "IO_METER", "MF_METER", "DO_VCB" take 46% of electrical fires. Therefore, about basic events which are included in the top two minimum cut sets, strict control is necessary.