• Title/Summary/Keyword: Fault Redundancy

Search Result 207, Processing Time 0.025 seconds

Extension of ReInForM Protocol for (m,k)-firm Real-time Streams in Wireless Sensor Networks

  • Li, Bijun;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.231-236
    • /
    • 2012
  • For real-time wireless sensor network applications, it is essential to provide different levels of quality of service (QoS) such as reliability, low latency, and fault-tolerant traffic control. To meet these requirements, an (m,k)-firm based real-time routing protocol has been proposed in our prior work, including a novel local transmission status indicator called local DBP (L_DBP). In this paper, a fault recovery scheme for (m,k)-firm real-time streams is proposed to improve the performance of our prior work, by contributing a delay-aware forwarding candidates selection algorithm for providing restricted redundancy of packets on multipath with bounded delay in case of transmission failure. Each node can utilize the evaluated stream DBP (G_DBP) and L_DBP values as well as the deadline information of packets to dynamically define the forwarding candidate set. Simulation results show that for real-time service, it is possible to achieve both reliability and timeliness in the fault recovery process, which consequently avoids dynamic failure and guarantees meeting the end-to-end QoS requirement.

Rotational Wireless Video Sensor Networks with Obstacle Avoidance Capability for Improving Disaster Area Coverage

  • Bendimerad, Nawel;Kechar, Bouabdellah
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.509-527
    • /
    • 2015
  • Wireless Video Sensor Networks (WVSNs) have become a leading solution in many important applications, such as disaster recovery. By using WVSNs in disaster scenarios, the main goal is achieving a successful immediate response including search, location, and rescue operations. The achievement of such an objective in the presence of obstacles and the risk of sensor damage being caused by disasters is a challenging task. In this paper, we propose a fault tolerance model of WVSN for efficient post-disaster management in order to assist rescue and preparedness operations. To get an overview of the monitored area, we used video sensors with a rotation capability that enables them to switch to the best direction for getting better multimedia coverage of the disaster area, while minimizing the effect of occlusions. By constructing different cover sets based on the field of view redundancy, we can provide a robust fault tolerance to the network. We demonstrate by simulating the benefits of our proposal in terms of reliability and high coverage.

Fault-Tolerant Design of Array Systems Using Multichip Modules (다중칩을 이용한 어레이시스템의 결함허용 설계)

  • Kim, Sung-Soo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3662-3674
    • /
    • 1999
  • This paper addresses some design issues for establishing the optimal number of spare units in array systems manufactured using fault-tolerant multichip modules(MCM's) for massively parallel computing(MPC). We propose a new quantitative approach to an optimal cost-effective MCM system design under yield and reliability constraints. In the proposed approach, we analyze the effect of residual redundancy on operational reliability of fault-tolerant MCM's. In particular, the issues of imperfect support circuitry, chip assembly yield and array topology are investigated. Extensive parametric results for the analysis are provided to show that our scheme can be applied to design ways using MCM's for MPC applications more efficiently, subject to yield and reliability constraints.

  • PDF

A Study of Parallel Operation of Module Power using CAN Communication (CAN통신을 이용한 모듈전원의 병렬운전에 관한 연구)

  • Park, Seong-Mi;Lee, Sang-Hyeok;Park, Sung-Jun;Lee, Bae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3603-3609
    • /
    • 2011
  • In this paper, we proposes new load-sharing algorism for equal current division using CAN communication. Proposed algorithm is different from conventional analog method, it performed strong Load-sharing using bi-direction high speed communication. Each modules constitution on independence controller (voltage controller, electric current controller). In parallel system prototype, each module have controller and performed load-sharing according to master module integral value. Also additional controller use for getting each module situations that fault situation of module and fault locate of module. we implemented high efficient load-sharing and redundancy. In this paper, we verify the validity of proposed algorithm using PSIM program and prototype.

Real-time Faulty Node Detection scheme in Naval Distributed Control Networks using BCH codes (BCH 코드를 이용한 함정 분산 제어망을 위한 실시간 고장 노드 탐지 기법)

  • Noh, Dong-Hee;Kim, Dong-Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.20-28
    • /
    • 2014
  • This paper proposes a faulty node detection scheme that performs collective monitoring of a distributed networked control systems using interval weighting factor. The algorithm is designed to observe every node's behavior collectively based on the pseudo-random Bose-Chaudhuri-Hocquenghem (BCH) code. Each node sends a single BCH bit simultaneously as a replacement for the cyclic redundancy check (CRC) code. The fault judgement is performed by performing sequential check of observed detected error to guarantee detection accuracy. This scheme can be used for detecting and preventing serious damage caused by node failure. Simulation results show that the fault judgement based on decision pattern gives comprehensive summary of suspected faulty node.

A Sensor Value Validation Technique for Supporting Stable Operations of Thermal Power Plants (화력발전소의 안정운전 지원을 위한 계측값 검증 기법에 관한 연구)

  • Lee, Seung-Chul;Kim, Seung-Jin;Han, Seung-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.201-209
    • /
    • 2009
  • In power plant operations, sensor values often exhibit erroneous values due to their failures or the intrusions of various noises. However, most of the power plant monitoring and fault diagnosis systems perform their tasks based on the assumptions that the collected sensor values are correct all the times. These assumptions, which are not valid, often lead to serious consequences such as power plant trips. In this paper, we propose a power plant sensor value validation technique that can utilize the relationships existing among the sensor values as the sensor redundancy. The proposed technique is applied to the flow meters installed along boiler feed water systems of a typical tubular type boiler thermal power plant and shows a good potential of future applications.

A Design of a Fault Tolerant Control System Using On-Line Learning Neural Networks (온라인 학습 신경망 조직을 이용한 내고장성 제어계의 설계)

  • Younghwan An
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1181-1192
    • /
    • 1998
  • This paper describes the performance of a full-authority neural network-based fault tolerant system within a flight control system. This fault tolerant flight control system integrates sensor and actuator failure detection, identification, and accommodation (SFDIA and AFDIA), The first task is achieved by incorporating a main neural network (MNN) and a set of n decentralized neural networks (DNNs) to create a system for achieving fault tolerant capabilities for a system with n sensors assumed to be without physical redundancy The second scheme implements the same main neural network integrated with three neural network controllers (NNCs). The function of NNCs is to regain equilibrium and to compensate for the pitching, rolling. and yawing moments induced by the failure. Particular emphasis is placed in this study toward achieving an efficient integration between SFDIA and AFDIA without degradation of performance in terms of false alarm rates and incorrect failure identification. The results of the simulation with different actuator and sensor failures are presented and discussed.

  • PDF

A Time-Redundant Recovery Policy of TMR Failures Using Rollback and Roll-forward (Rollback과 Roll-forward 기법을 사용한 TMR 고장의 시간여분 복구 정책)

  • Yun, Jae-Yeong;Kim, Hak-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.216-224
    • /
    • 1999
  • In the paper we propose two recovery methods by adopting a rollback and/or roll-forward technique (S) to recover TMR failures in a TMR (structured ) system that is the simplest spatial redundancy. This technique is apparently effective to recovering TMR failures primarily caused by transient faults. The proposed policies carry out few reconfigurations at the cost of (minimal) time-overhead needed for those time-redundant schemes. The optimal checkpoint-interval vectors are derived for both methods through the likelihoods of all (possible) states of the system as well as the total execution-time. Consequently the effectiveness of our proposed policies is validated through certain numerical examples and simulations.

  • PDF

Development of Digital/Analog Hybrid Redundancy System for Audio Mixer (오디오믹서용 디지털-아날로그 하이브리드 이중화 시스템 개발)

  • KIM, Kwan-Woong;CHO, JUPHIL
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.63-68
    • /
    • 2016
  • Audio mixer is an electronic device which performs a mixing of multiple audio signals. Digital mixer having various functions and scalability is spreaded thanks to advanced DSP and IT technology. However, digital mixer is more vulnerable to stability comparing to conventional analog mixer in the digital error or software error sense because its control is executed by SW. To solve this problem, in this paper, we propose a multi-channel digital analog hybrid mixer scheme, digital mixer error detection mechanism and malfunctioning switching technique. Also we develop the audio mixer having digital-analog hybrid structure. By simulation, we can sense the error of digital mixer except power loss in a 120ms, change into analog mixer mode automatically and provide continuous broadcasting function without mixer function loss.

Redundant Controls Allocation by a Modified Pseudo Inverse Redistribution Method (수정된 의사역행렬 재분배 기법을 이용한 여유 조종력 할당)

  • Jin, Jae-Hyun;Yoo, Chang-Sun;Ryu, Hyeok;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.65-71
    • /
    • 2004
  • Redundant control surfaces arc adopted to modern aircraft designs because of high performance and fault tolerant control, so efficient redundancy management is necessary to take advantage of redundant control surfaces. This paper focuses on the control allocation scheme as one of redundancy management methods. A modified pseudo inverse redistribution method is proposed. The existing method sets all saturated controls as their limit values when a pseudo inverse is calculated. But the modified scheme sets only one saturated control as its limit value and redistributes remaining controls. It is shown that the proposed scheme is superior to the existing method by several numerical examples.