• Title/Summary/Keyword: Fault Mode

Search Result 326, Processing Time 0.026 seconds

Three Phase Drive Transfer Algorithm for Fault Tolerance Control of Six-Phase PMSM (6상 영구자석 동기전동기의 고장대응운전을 위한 3상 구동시스템 전환 알고리즘)

  • Kim, Seong-Hoon;Jang, Won-Jin;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.256-262
    • /
    • 2021
  • Six-phase motors can be used in industrial applications, such as an electric vehicle, due to their high reliability and low current magnitude per phase. An asymmetrical PMSM with two sets of three-phase windings is a commonly used structure for six-phase motors, with each winding set demonstrating a phase difference of 30°. Although the asymmetrical PMSM presents low torque ripples, its dynamic torque response deteriorates due to coupled components in the two three-phase windings. The decoupled VSD control is applied to eliminate the coupling effect. Load ratio control of two inverters for the six-phase PMSM is proposed in this study. DQ currents are controlled on the basis of two synchronous reference frames, and the six-phase drive system can be changed to a three-phase drive system when one inverter presents fault conditions. The operation and effectiveness of the proposed algorithm is verified through simulation and experiments. The six-phase drive system is transferred to a three-phase drive system by changing the current reference of the second DQ reference frame. Moreover, control of both torque and speed exhibits satisfactory performance before and after the mode change.

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

Design of a vehicle navigation system using the federated kalman filter (연합형 칼만 필터를 이용한 차량항법시스템의 설계)

  • 김진원;지규인;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1348-1351
    • /
    • 1997
  • The federated Kaman filter(FKF) is being widely used in many multisensor navigatiion systems. It is know that the FKF has advantages of simplicity and fault-tolerance over other decentralized filter techniques. In this paper, optimal and suboptimal FKF configuratiions are mentioned and a covariance analysis technique for the suboptimal FKF is newly presented. The suboptimal FKF configuration, known as No-reset(NR) mode, has better fault tolerance capability than the optimal FKF coniguratioin. In the suggested technique, a suboptimal fusion process of FKF is considered a swell as suboptimal gains of local filters. An upper boun of error covariance for suboptimal FKF is derived. Also, it is mathematically shown that this bound is smaller thanexisting bound in the literatrue. A vehicle-navigaion system is designed using the FKF. In thissystem, a map constraing equation is introduced and used as a measurement equatioin of Kalman filter. Performance analysis is done by the suggested covariance analysis techniques.

  • PDF

Minimization of Rising and Falling Times of A Boost Type Converter Output Voltage in Pulsed Mode Operation

  • Nho Eui-Cheol;Kim In-Dong;Joe Cheol-Je;Chun Tae-Won;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.286-290
    • /
    • 2001
  • This paper describes an improved short-circuit protection method with a boost type rectifier using a multilevel ac/dc power converter. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. Once the fault has been cleared the dc power is reapplied to the load. The rising time of the dc load voltage is as small as several hundred microseconds, and there is no overshoot of the dc voltage because the dc output capacitors hold undischarged state. The converter, which employs the proposed method, has the characteristics of a simplified structure, reduced cost, weight, and volume compared with a conventional power supply, which has frequent output short-circuits. Experimental results are presented to verify the usefulness of the proposed converter.

  • PDF

Determination of Critical Generator Group Using Accelerating Power and Synchronizing Power Coefficient in the Transient Energy Function Method

  • Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • This paper proposes an algorithm for determining critical generator lists using accelerating power and synchronizing power coefficient (SPC), and critical generator group (CGG) from CGG candidates, which is a combination of critical generators. The accurate determination of CGG provides a more accurate energy margin while providing system operator with information of possible unstable generator group. Classical transient energy function (TEF) method selects the critical generators with big corrected kinetic energy of each generator at the moment of fault removal. However, the generator with small acceleration after fault, that is, the generator with small corrected kinetic energy, is also likely to belong to CGG if the generator has small synchronizing power. The proposed algorithm has been verified to be effective compared with the classical TEF method. We utilized the power system of Korean Electric Power Corporation(KEPCO) as a test system.

Standardization of a Remote Motoring and Controlling System for Nursery Electrical Facilities (양식장 전력설비의'원격 감시 및 제어 시스템 표준화)

  • 권장우;김정인;송재용;손원진;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.398-401
    • /
    • 2000
  • This paper describes the standardization of remote monitoring and controlling system for nursery electrical facilities. The proposed system have three operating modes of motoring, controlling, and fault-notifying. In fault-notifying mode, the local unit is designed to send messages on failure of the electrical facilities to the central computer, mobile phone, and pager. Also, the local unit is consisted of 24-input and 8-output port needed for monitoring and controlling the facilities. With the use of this standardized system, we could expect the effective management in every phase of nursery facilities.

  • PDF

Detection and Diagnosis of Sensor Faults for Unknown Sensor Bias in PWR Steam Generator

  • Kim, Bong-Seok;Kang, Sook-In;Lee, Yoon-Joon;Kim, Kyung-Youn;Lee, In-Soo;Kim, Jung-Taek;Lee, Jung-Woon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.86.5-86
    • /
    • 2002
  • The measurement sensor may contain unknown bias in addition to the white noise in the measurement sequence. In this paper, fault detection and diagnosis scheme for the measurement sensor is developed based on the adaptive estimator. The proposed scheme consists of a parallel bank of Kalman-type filters each matched to a set of different possible biases, a mode probability evaluator, an estimate combiner at the outputs of the filters, a bias estimator, and a fault detection and diagnosis logic. Monte Carlo simulations for the PWR steam generator in the nuclear power plant are provided to illustrate the effectiveness of the proposed scheme.

  • PDF

Safety Assessment Analysis of the Rotorcraft Fuel Pumps (회전익기 연료펌프 안전성 평가 분석)

  • Lee, Junghoon;Park, Jang-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.21-25
    • /
    • 2013
  • The system and components for aircraft are required the design data on which the safety requirements are properly reflected for their certification. This paper presents the procedure and results of a safety assessments analysis for the rotorcraft fuel pumps in oder to confirm and verify them. The fuel pumps design assessment must be performed, including a detailed failure analysis to identify all failures that will prevent continued safe flight or safe landing. In order to assess the fuel pumps design safety, not only system safety hazard analysis and but FTA(Fault Tree Analysis) for proofing the safety objective of the fuel pumps are performed. The results of the safety assessment for fuel pumps validate that no single failure or malfunction could result in catastrophic failure or critical accidents of the rotorcraft.

Stabilization of Power Systems with a Sliding Control Using Fuzzy Estimation of Bounding Function (전력계통 안정화를 위한 퍼지 유계함수 추정을 이용한 슬라이딩 제어)

  • Park, Young-Hwan;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.875-879
    • /
    • 1998
  • A fault on the transmission line results in the variation of reactance and parametric uncertainties in the power system dynamics. In this case, we need a robust control to cope with these uncertainties. A sliding mode control, a sort of robust control, is known to be robust to parametric or state-dependent uncertainties if the bounding function of uncertain terms is determined a priori. However, in general, we can not readily determine the bounding function for the complex systems. Hence, in this paper we introduce a fuzzy system which can estimate the bounding function in relatively simple way. By the use of the proposed fuzzy system, determination of bounding function is made easier. We applied the proposed scheme to the stabilization of power system under the sudden fault on the transmission lines. The simulation result verifies the effectiveness of the scheme.

  • PDF

Dependability Analysis of Fault Detection Function and Reliability of Reactor Protection System (원자로보호계통의 고장검출기능과 신뢰도의 상관관계 분석)

  • Kim, Ji-Young;Park, Hong-Lae;Lyou, Joon;Lee, Dong-Young;Choi, Jong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.29-32
    • /
    • 2004
  • Reliability is an important issue on the digital reactor protection system. This paper presents a Quantitative reliability evaluation method to find out an improvement effect of availability for the digital control module with a fault detection function. It is a reliability evaluation model which considers only the electronics parts ocurring a spurious reactor trip by the FMEA(Failure Mode Effect Analysis). Applying the previous and present methods to the reactor protection system, the availability factors are evaluated and compared.

  • PDF