• Title/Summary/Keyword: Fault Localization

Search Result 55, Processing Time 0.023 seconds

Fault Management in Crossbar ATM Switches (크로스바 ATM 스위치에서의 장애 관리)

  • Oh Minseok
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.83-96
    • /
    • 2005
  • The multichannel switch is an architecture widely used for ATM (Asynchronous Transfer Mode). It is known that the fault tolerant characteristic can be incorporated into the multichannel crossbar switching fabric. For example, if a link belonging to a multichannel group fails, the remaining links can assume responsibility for some of the traffic on the failed link. On the other hand, if a fault occurs in a switching element, it can lead to erroneous routing and sequencing in the multichannel switch. We investigate several fault localization algorithm in multichannel crossbar ATM switches with a view to early fault recovery. The optimal algorithm gives the best performance in terms of time to localization but it is computationally complex which makes it difficult to implement. We develop an on-line algorithm which is computationally more efficient than the optimal one. We evaluate its performance through simulation. The simulation results show that the Performance of the on-line algorithm is only slightly sub-optimal for both random and bursty traffic. There are cases where the proposed on-line algorithm cannot pinpoint down to a single fault. We enumerate those cases and investigate the causes. Finally, a fault recovery algorithm is described which utilizes the information provided by the fault localization algorithm The fault recovery algorithm providesadditionalrowsandcolumnstoallowcellstodetourthefaultyelement.

Fault Localization Method by Utilizing Memory Update Information and Memory Partitioning based on Memory Map (메모리 맵 기반 메모리 영역 분할과 메모리 갱신 정보를 활용한 결함 후보 축소 기법)

  • Kim, Kwanhyo;Choi, Ki-Yong;Lee, Jung-Won
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.998-1007
    • /
    • 2016
  • In recent years, the cost of automotive ECU (Electronic Control Unit) has accounted for more than 30% of total car production cost. However, the complexity of testing and debugging an automotive ECU is increasing because automobile manufacturers outsource automotive ECU production. Therefore, a large amount of cost and time are spent to localize faults during testing an automotive ECU. In order to solve these problems, we propose a fault localization method in memory for developers who run the integration testing of automotive ECU. In this method, memory is partitioned by utilizing memory map, and fault-suspiciousness for each partition is calculated by utilizing memory update information. Then, the fault-suspicious region for partitions is decided based on calculated fault-suspiciousness. The preliminary result indicated that the proposed method reduced the fault-suspicious region to 15.01(%) of memory size.

Wavelet Transform Based Time-Frequency Domain Reflectometry for Underground Power Cable (지중 전력 케이블에 대한 웨이블릿 변환 기반 시간-주파수 영역 반사파 계측법 개발)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2333-2338
    • /
    • 2011
  • In this paper, we develope a wavelet transform based time-frequency domain reflectometry (WTFDR) for the fault localization of underground power cable. The conventional TFDR (CTFDR) is more accurate than other reflectometries to localize the cable fault. However, the CTFDR has some weak points such as long computation time and hard implementation because of the nonlinearity of the Wigner-Ville distribution used in the CTFDR. To solve the problem, we use the complex wavelet transform (CWT) because the CWT has the linearity and the reference signal in the TFDR has a complex form. To confirm the effectiveness and accuracy of the proposed method, the actual experiments are carried out for various fault types of the underground power cable.

Fault Localization for Self-Managing Based on Bayesian Network (베이지안 네트워크 기반에 자가관리를 위한 결함 지역화)

  • Piao, Shun-Shan;Park, Jeong-Min;Lee, Eun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.137-146
    • /
    • 2008
  • Fault localization plays a significant role in enormous distributed system because it can identify root cause of observed faults automatically, supporting self-managing which remains an open topic in managing and controlling complex distributed systems to improve system reliability. Although many Artificial Intelligent techniques have been introduced in support of fault localization in recent research especially in increasing complex ubiquitous environment, the provided functions such as diagnosis and prediction are limited. In this paper, we propose fault localization for self-managing in performance evaluation in order to improve system reliability via learning and analyzing real-time streams of system performance events. We use probabilistic reasoning functions based on the basic Bayes' rule to provide effective mechanism for managing and evaluating system performance parameters automatically, and hence the system reliability is improved. Moreover, due to large number of considered factors in diverse and complex fault reasoning domains, we develop an efficient method which extracts relevant parameters having high relationships with observing problems and ranks them orderly. The selected node ordering lists will be used in network modeling, and hence improving learning efficiency. Using the approach enables us to diagnose the most probable causal factor with responsibility for the underlying performance problems and predict system situation to avoid potential abnormities via posting treatments or pretreatments respectively. The experimental application of system performance analysis by using the proposed approach and various estimations on efficiency and accuracy show that the availability of the proposed approach in performance evaluation domain is optimistic.

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.

Development of Range Sensor Based Integrated Navigation System for Indoor Service Robots (실내용 서비스 로봇을 위한 거리 센서 기반의 통합 자율 주행 시스템 개발)

  • Kim Gunhee;Kim Munsang;Chung Woojin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.785-798
    • /
    • 2004
  • This paper introduces the development of a range sensor based integrated navigation system for a multi-functional indoor service robot, called PSR (Public Service Robot System). The proposed navigation system includes hardware integration for sensors and actuators, the development of crucial navigation algorithms like mapping, localization, and path planning, and planning scheme such as error/fault handling. Major advantages of the proposed system are as follows: 1) A range sensor based generalized navigation system. 2) No need for the modification of environments. 3) Intelligent navigation-related components. 4) Framework supporting the selection of multiple behaviors and error/fault handling schemes. Experimental results are presented in order to show the feasibility of the proposed navigation system. The result of this research has been successfully applied to our three service robots in a variety of task domains including a delivery, a patrol, a guide, and a floor cleaning task.

Localization Error Recovery Based on Bias Estimation (바이어스추정을 기반으로 한 위치추정의 오차회복)

  • Kim, Yong-Shik;Lee, Jae-Hoon;Kim, Bong-Keun;Ohba, Kohtaro;Ohya, Akihisa
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.112-120
    • /
    • 2009
  • In this paper, a localization error recoverymethod based on bias estimation is provided for outdoor localization of mobile robot using different-type sensors. In the previous data integration method with DGPS, it is difficult to localize mobile robot due to multi-path phenomena of DGPS. In this paper, fault data due to multi-path phenomena can be recovered by bias estimation. The proposed data integration method uses a Kalman filter based estimator taking into account a bias estimator and a free-bias estimator. A performance evaluation is shown through an outdoor experiment using mobile robot.

  • PDF

A Study on the Acoustic Fault Detection System of Insulators from Their Radiation Noises

  • Park, Kyu-Chil;Yoon, Jong-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.510-514
    • /
    • 2011
  • To detect the insulator in the fault state on the electric poles, we first measured radiation sounds from normal state insulators and error state insulators in the anechoic chamber. We processed the signals in frequency domain to find the features with filter bank, narrow band and wide band analysis. So we could found two apparent results from their frequency spectrums - one was 120Hz harmonic components, the other was high average noise level than normal state ones. Then we also introduced a technique for the direction detection of the fault state insulator using the cross correlation from the three dimensional array microphones. To eliminate the noise signal from unexpected directions, we suggested the zero padding technique in cross correlation function. From these, we could conclude that acoustic fault detection techniques are useful of the detection of insulators' faults and the estimation of the direction of the fault state insulators.

Feedback scope for fault detection and localization

  • Hunsang Jung;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.32.6-32
    • /
    • 2002
  • The damage localization of the structural system using the natural frequency measurement only is proposed. The existing methods use the changes of mode shape, strain mode shape or curvature mode shape before and after the damage occurrence as these shapes carry the geometric information of the structure. Basically, the change of natural frequencies of the structure can be used as the indicator of the damage occurrence but not as the indicator of the damage location as the natural frequency changes does not carry the geometric information of the structure. In this research, the feedback scope method that measures the natural frequency changes of the structure with and without the feedback Ioo...

  • PDF

Bearing Faults Localization of a Moving Vehicle by Using a Moving Frame Acoustic Holography (이동 프레임 음향 홀로그래피를 이용한 주행 중인 차량의 베어링 결함 위치 추정)

  • Jeon, Jong-Hoon;Park, Choon-Su;Kim, Yang-Hann;Koh, Hyo-In;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.816-827
    • /
    • 2009
  • This paper deals with a bearing faults localization technique based on holographic approach by visualizing sound radiated from the faults. The main idea stems from the phenomenon that bearing faults in a moving vehicle generate impulsive sound. To visualize fault signal from the moving vehicle, we can use the moving frame acoustic holography [Kwon, H.-S. and Kim, Y.-H., 1998, "Moving Frame Technique for Planar Acoustic Holography," J. Acoust. Soc. Am. Vol. 103, No. 4, pp. 1734${\sim}$1741]. However, it is not easy to localize faults only by applying the method. This is because the microphone array measures noise(for example, noise from other parts of the vehicle and the wind noise) as well as the fault signal while the vehicle passes by the array. To reduce the effect of noise, we propose two ideas which utilize the characteristics of fault signal. The first one is to average holograms for several frequencies to reduce the random noise. The second one is to apply the partial field decomposition algorithm [Nam, K.-U., Kim, Y.-H., 2004, "A Partial Field Decomposition Algorithm and Its Examples for Near-field Acoustic Holography," J. of Acoust. Soc. Am. Vol. 116, No. 1, pp. 172${\sim}$185] to the moving source, which can separate the fault signal and noise. Basic theory of those methods is introduced and how they can be applied to localize bearing faults is demonstrated. Experimental results via a miniature vehicle showed how well the proposed method finds out the location of source in practice.