• 제목/요약/키워드: Fault Frequency

검색결과 604건 처리시간 0.026초

베어링 잔존 수명 예측을 위한 주파수 에너지 기반 특징신호 추출 (Feature Extraction for Bearing Prognostics based on Frequency Energy)

  • 김석구;최주호;안다운
    • 한국ITS학회 논문지
    • /
    • 제16권2호
    • /
    • pp.128-139
    • /
    • 2017
  • 철도는 항공기, 선박 등과 더불어 대표적 대중교통 수단으로서 최근 고속 철도의 등장으로 인해 그 비중이 점점 더 높아지고 있으며, 아울러 대형사고의 위험 또한 증가하고 있다. 이중에서 철도 차량의 차축 베어링은 높은 안전성이 요구되는 부품으로서 최근 이의 고장예측을 위한 건전성 관리기술(Prognostics and Health Management, PHM)에 많은 연구가 집중되고 있다. PHM은 센서를 통해 얻은 데이터로부터 결함관련 특징신호를 추출하고 현재의 고장수준 진단과 미래의 고장싯점을 예측하는 기술로서, 이중에서 가장 중요한 부분은 올바른 특징신호를 추출하는 것이다. 그러나 지금까지의 특징신호들은 잡음으로 인한 심한 변동이나 비단조 경향으로 인해 고장예측에 이용하기에 부족한 점이 있었다. 본 연구에서는 이를 극복하기 위해 주파수 에너지 이동현상을 기반으로 정보 엔트로피를 특징신호로 사용하는 새로운 특징신호 추출법을 개발하고 IEEE 2012 PHM 경진대회에서 공개된 FEMTO 베어링 수명시험 데이터를 대상으로 기존의 특징신호들과 고장예측 성능비교를 함으로써 그 우수성을 검증하였다.

과산화수소 농축을 위한 투과증발공정의 정량적 위험성 분석 (Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide)

  • 정호진;윤익근;최수형
    • Korean Chemical Engineering Research
    • /
    • 제52권6호
    • /
    • pp.750-754
    • /
    • 2014
  • 초고농도 과산화수소 제조를 위한 투과증발 공정의 정량적 위험성 분석을 수행하였다. 잠재적 주요 사고는 분해반응에 따른 폭발 및 화재이며 실험실 규모일 때 사고결과는 카테고리 3에 속하는 것으로 판단된다. 대상공정에서 분해반응이 일어나는 과정을 사건트리 형태로 모델링하고 사고원인들의 확률함수를 유사사건 발생빈도 자료를 근거로 설정하였다. 구축된 모델을 사용하여 사고율을 계산한 결과, 수용 가능한 위험수준, 즉 사고빈도가 $10^{-4}/yr$ 이하가 되려면 추가 안전장치가 필요한 것으로 파악되었다. 이를 위해 방호계층분석을 적용한 결과, 촉매반응을 막기 위한 본질적 안전설계, 과열을 막기 위한 SIF (safety instrumented function), 그리고 분해반응이 일어나더라도 폭발로 이어지지는 것을 막는 릴리프 시스템이 요구되었다. 제안된 방법은 과산화수소 농축을 포함한 다양한 화학공정의 안전관리시스템 개발에 기여할 수 있을 것으로 기대된다.

순시전력 균형제어를 이용한 병렬 인버터 시스템 (A Parallel Inverter System with an Instantaneous Power Balance Control)

  • 선영식;이창석;김시경;김창봉
    • 대한전자공학회논문지SD
    • /
    • 제37권1호
    • /
    • pp.19-28
    • /
    • 2000
  • 고장에 대한 강인성, 높은 출력 전류 특성 및 모듈화의 용이성 때문에 병렬 인버터 시스템은 그활용도가 점차 높아지고 있다. 이러한 병렬 인버터 시스템에서 전체 시스템 전력균형 제어는 주로 주파수 드롭과 전압 드룹 제어 또는 유효전력 과 무효전력 제어를 통하여 이루어지고 있다. 그러나 이러한 제어방법들은 시스템 변수 변동 및 부하변동에 따라 늦은제어 응답특성을 가지는 단점을 가지고 있다. 이러한 단점을 해결하기위해, 본논문에서는 병렬 인버터 시스템의 각모듈 출력전력을 균등화 시키는 새로운 제어기를 제안하였다. 제안한 제어기는 하드웨어 구현의 용이성, 피크전류 차단 기능들의 특성을 가진다. 또한 본논문에서는 제안한 제어기의 설계 절차를 기술하였으며, 여러 부하조건 및 시스템 파라미터 변동조건에 따라 순시전력균형제어기 동작 특성의 효용성을 컴퓨터 시뮬레이션 및 실험을 통하여 확인 하였다.

  • PDF

Numerical study on Floor Response Spectrum of a Novel High-rise Timber-concrete Structure

  • Xiong, Haibei;Zheng, Yingda;Chen, Jiawei
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.273-282
    • /
    • 2020
  • An innovative high-rise timber-concrete hybrid structure was proposed in previous research, which is composed of the concrete frame-tube structure and the prefabricated timber modules as main structure and substructures, respectively. Considering that the timber substructures are built on the concrete floors at a different height, the floor response spectrum is more effective in estimating the seismic response of substructures. In this paper, the floor response spectra of the hybrid structure with different structural parameters were calculated using dynamic time-history analysis. Firstly, one simplified model that can well predict the seismic response of the hybrid structure was proposed and validated. Then the construction site, the mass ratio and the frequency ratio of the main-sub structure, and the damping ratio of the substructures were discussed. The results demonstrate that the peaks of the floor response spectra usually occur near the vibration periods of the whole structure, among which the first two peaks stand out; In most cases, the acceleration amplification effect on substructures tends to be more evident when the construction site is farther from the fault rupture; On the other hand, the acceleration response of substructures can be effectively reduced with an appropriate increase in the mass ratio of the main-sub structure and the damping ratio of the substructures; However, the frequency ratio of the main-sub structure has no discernible effect on the floor response spectra. This study investigates the characteristics of the floor response spectrum of the novel timber-concrete structure, which supports the future applications of such hybrid structure in high-rise buildings.

원자력발전소 터빈밸브 시험주기 연장시 신뢰도평가 (The Reliability Evaluation of TBN Valve Testing Extension in NPP)

  • 임혁순;이은찬;이근성;황석원;성기열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3221-3223
    • /
    • 2007
  • Recently, nuclear power plant companies have been extending the turbine valve test interval to reduce the potential of the reactor trip accompanied with a turbine valve test and to improve the NPP's economy through the reduction of unexpected plant trip or decreased operation. In these regards, the extension of the test interval for turbine valves was reviewed in detail. The effect on the destructive overspeed probability due to the test interval change of turbine valves is evaluated by Fault Tree Analysis(FTA) method. Even though the test interval of turbine valves is changed from 1 month to 3 months, the analysis result shows that the reliability of turbine over speed protection system meets acceptance criteria of 1.0E-4/yr. This result will be used as the technical basis on the extension of the test interval for turbine valves. In this paper, the propriety of the turbine valve test interval extension is explained through the review on the turbine valve test interval status of turbine overspeed protection system, the analysis on the annual turbine missile frequency and the probability evaluation of the destructive overspeed due to the test interval extension.

  • PDF

RCM 기반 철도시설물 고장분석시스템 구축 - 서울메트로 - (A Study on Constructing the RCM-based Failure Analysis System for Railway Facilities & Equipments)

  • 정관수;서광혁;이정주;남진근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.881-895
    • /
    • 2011
  • Seoul Metro railway facilities' inspection and maintenance tasks cause failure analysis, but if there is trouble the diverse cause investigation and the systematic analysis and management among broken facilities, related facilities and components fell short and the conditions are different. And, excess and insufficiency, under inspection and maintenance, is being raised regardless of the introduction year and the operating environment including the number of use by applying the same facilities in the uniform inspection cycle. In this study, we will analysis systematically facility system information, failures, operational status, performance, fault and maintenance information resulting from the maintenance management of railway facilities and derive the relationship between associated equipment and its components. In addition, optimizing the inspection and the maintenance cycles of railway facilities, we will improve the reliability of operation. Considering the probability of risk, it is possible to predict the occurrence of accidents or faults and to minimize the frequency of breakdown by pre-inspection maintenance. Finally, This paper is to introduce the content of constructing the Seoul Metro RCM-based failure analysis system for railway facilities to support the optimal continuance of operation status of equipments and the securement of the safe operation of vehicles.

  • PDF

EV와 NEV 겸용 50kW급 고효율 모듈형 급속충전기 개발 (Development of 50kW High Efficiency Modular Fast Charger for Both EV and NEV)

  • 김민재;김연우;요스 프라보우;최세완
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.373-380
    • /
    • 2016
  • In this paper, a 50-kW high-efficiency modular fast charger for both electric vehicle (EV) and neighborhood electric vehicle (NEV) is proposed. The proposed fast charger consists of five 10-kW modules to achieve fault tolerance, ease of thermal management, and reduce component stress. Three-level topologies for both AC-DC and DC-DC converters are employed to use 600V MOSFET, resulting in ease of component selection and increase in switching frequency. The proposed three-level DC-DC converter with coupled inductor and its hybrid switching method can reduce the circulating current under wide output voltage range. A 50-kW prototype of the proposed fast charger was developed and tested to verify the validity of the proposed concept. Experimental results show that the proposed fast charger achieves a rated efficiency of 95.2% and a THD of less than 3%.

Utilization of Energy Storage System based on the Assessment of Area of Severity in Islanded Microgrid

  • Lee, Kyebyung;Yoon, Minhan;Park, Chang-Hyun;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.569-575
    • /
    • 2017
  • This paper proposes a method to utilize an energy storage system (ESS) based on the assessment of an area of severity (AOS) to voltage sag. The AOS is defined as a set of the fault positions that can cause voltage sags at many buses simultaneously. The assessment of AOS helps to determine an optimal location of ESS installation to minimize the expected sag frequency (ESF) at concerned buses. The ESS has the ability not only to play traditionally known roles but also to mitigate voltage sag impact on renewable energy sources (RES) in the islanded microgrid. Accordingly, using the proposed method the ESS has additional features to prevent the operation failure of RESs and improve the stability of the microgrid. In order to verify the presented method, a case study was conducted on the sample microgrid system that is modified from an IEEE 57-bus system.

Design Improvement for the Cooling System of the Interim Spent Fuel Storage Facility Using a PSA Method

  • Ko, Won-Il;Park, Jong-Won;Park, Seong-Won;Lee, Jae-Sol;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.440-451
    • /
    • 1996
  • With emphasis on safety, this study addresses for better design condition for the cooling system in a wet-type interim spent fuel storage facility, using a probabilistic safety assessment method. To incorporate the design renovation into the design phase, a simple approach is proposed. By taking the cooling system of a reference design, a fault tree analysis was performed to identify the weak point of the considered system, and then basic factors for design renovation were defined. A total of 21 design alternatives were selected through the combination of the basic factors. Finally, the optimum design alternative for the cooling system is derived by means of the cost and effect analysis based on the estimated cost, system reliability and assumed probabilistic safety criteria. With the assumption that the failure frequency of at-reactor spent fuel cooling system compiles with probabilistic safety criteria for the interim spent fuel cooling system, it was shown that the optimum alternative should have l00% cooling loop redundancy with one pump per cooling loop and a cleanup system installed separately from the main loop. Furthermore, it also should be classified into safety system. The result of this study can be used as a useful basis to identify factors of safety concern and to establish design requirements in the future. The method also can be applied for other nuclear facilities.

  • PDF

베어링 고장 예후검출을 위한 음향 방출(AE)센서 개발 (Development of Acoustic Emission(AE) Sensor for Prognosis Detection of Bearing Fault)

  • 이치범;김경우;박영일
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.429-436
    • /
    • 2014
  • Most mechanical systems are now operating consistently and getting faster due to the development of automation systems. Peoples' dependence on machines have increased as when problems occur within the mechanical system, personal injury and production loss may come as a result, as most of the mechanical system's malfunctions are caused by the failure of the rotational bearing. What we need now is a maintenance system that can warn us when it detects abnormal conditions before significant damage occurs to the bearing. In this study, we have developed an acoustic emissions sensor that can figure if the bearing works under the normal condition. With this acoustic emissions sensor, we can inspect the bearing for defects by using the Heterodyne technique, which converts the ultrasound signal into audio, as a signal conditioning process.