• Title/Summary/Keyword: Fault Frequency

Search Result 604, Processing Time 0.03 seconds

Accuracy Improvement of Time Domain Impedance Measurement Using Error Calibration Method (오차 보정 방법을 이용한 시간 영역 임피던스 측정의 정확도 개선)

  • Roh, Hyun-Seung;Cui, Chenglin;Kim, Yang-Seok;Chae, Jang-Bum;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1315-1322
    • /
    • 2012
  • Frequency domain reflectometry diagnoses faults on electric cables by measuring the cable impedance. Time domain impedance measurement technique using an oscilloscope instead of a network analyzer is widely used for electric power cables under harsh environment or powered condition. However, impedance measurement in the time domain shows inaccuracy as the frequency increases due to several parasitic impedances, which results in the poor resolution of fault points. This paper presents the accuracy enhancement technique using a module with an operational amplifier and an error calibration method in the time domain impedance measurements, which is confirmed by comparing the cable impedance measurement results.

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping

  • Wang, Liangkun;Shi, Weixing;Zhou, Ying;Zhang, Quanwu
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2020
  • In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.

Built-In-Test Methods to use RF returnloss for fault Diagnosis of the Wideband Transmitter Antenna (광대역 무선송신장치의 RF 반사손실을 이용한 안테나 자체고장진단 방법)

  • Jung, Won-hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.409-416
    • /
    • 2017
  • In order that multiple wideband RF transmitters which have mission to deliver essential information to aircraft operate at the same time, RF transmitter has a variable sub-carrier frequency to modulate the signal. In case of exposure to weak environment, Wide-band RF transmitter is designed to check component of transmitter that includes antenna BIT to increase system reliability. Normally, Antenna BIT measure the reflection RF power of antenna to check system condition. However, Antenna BIT has a difference that depends on testing frequency to use the long RF cable which is located between the power amp and the antenna. The periodic phenomenon of the reflected antenna power are theoretically explained about dependence on the RF cable length. Based on presented result, suggested measurement methods is effectively able to be applied to diagnosis system condition.

Risk Model Development for PWR During Shutdown (원자로 정지 동안의 위해도 모델 개발)

  • Yoon, Won-Hyo;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 1989
  • Numerous losses of decay heat removal capability have occurred at U during stutodwn while its significance to safety is needless to say. A study is carried out as an attempt to assess what could be done to lower the frequency of these events and to mitigate their consequences in the unlikely event that one occurs. The shutdown risk model is developed and analyzed using Event/Fault Tree for the typical pressurized water reactor. The human cognitive reliability (HCR) model, two-stage bayesian approach and staircase function model are used to estimate human reliability, initiating event frequency and offsite power non-recovery probability given loss of offsite power, respectively. The results of this study indicate that the risk of a Pm at shutdown is not much lower than the risk when the plant is operating. By examining the dominant accident sequences obtained, several design deficiencies are identified and it is found that some proposed changes lead to significant reduction in core damage frequency due to loss of cooling events.

  • PDF

Geometrical Interpretation on the Development Sequence and the Movement Sense of Fractures in the Cheongsong Granite, Gilan-myeon Area, Uiseong Block of Gyeongsang Basin, Korea (경상분지 의성지괴 길안면지역에서 청송화강암의 단열 발달사 및 운동성에 대한 기하학적 해석)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.4 s.46
    • /
    • pp.180-193
    • /
    • 2006
  • The Gilan area in the central-northern part of Uiseong Block of Cretaceous Gyeongsang Basin is composed of Precambrian metamorphic rocks, Triassic Cheongsong granite, Early Cretaceous Hayans Group, and Late Cretaceous-Paleocene igneous rocks. In this area, the faults of various directions are developed: Oksan fault of $NS{\sim}NNW$ trend, Gilan fault of NW trend, Hwanghaksan fault of WNW trend, and Imbongsan fault of EW trend. Several fracture sets with various geometric indicators, which determine their relative timing (sequence and coexistence relationships) and shear sense, we well observed in the Cheongsong granite, the basement of Gyeongsang Basin. The aim of this study is to determine the development sequence of extension fractures and the movement sense of shear fractures in the Gitan area on the basis of detailed analysis of their geometric indicators (connection, termination, intersection patterns, and cross-cutting relations). This study suggests that the fracture system of the Gilan area was formed at least through seven different fracturing events, named as Pre-Dn to Dn +5 phases. The orientations of fracture sets show (W) NW, NNW, NNE, EW, NE in descending order of frequency. The orientation and frequency patterns are concordant with those of faults around and in the Gilan area on a geological map scale. The development sequence and movement sense of fracture sets are summarized as follows. (1) Pre-Dn phase: extension fracturing event of $NS{\sim}NNW$ and/or $WNW{\sim}ENE$ trend. The joint sets of $NS{\sim}NNW$ trend and of $WNW{\sim}ENE$ trend underwent the reactivation histories of sinistral ${\rightarrow}$dextral${\rightarrow}$sinistral shearing and of (dextral${\rightarrow}$) sinistral shearing with the change of stress field afterward, respectively. (2) Dn phase: that of NW trend. The joint set experienced the reactivations of sinistral${\rightarrow}$dextral shearing. (3) Dn + 1 phase: that of $NNE{\sim}NE$ trend. The joint set was reactivated as a sinistral shear fracture afterward. (4) Dn +2 phase: that of $ENE{\sim}EW$ trend. (5) Dn +3 phase: that of $WNW{\sim}NW$ trend. (6) Dn+4 phase: that of NNW trend. The joint set underwent a dextral shearing after this. (7) The last Dn +5 phase: that of NNE trend.

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method (EEMD법을 이용한 저속 선회베어링 상태감시)

  • Caesarendra, W.;Park, J.H.;Kosasih, P.B.;Choi, B.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2013
  • Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.

An Effective Feature Extraction Method for Fault Diagnosis of Induction Motors (유도전동기의 고장 진단을 위한 효과적인 특징 추출 방법)

  • Nguyen, Hung N.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.23-35
    • /
    • 2013
  • This paper proposes an effective technique that is used to automatically extract feature vectors from vibration signals for fault classification systems. Conventional mel-frequency cepstral coefficients (MFCCs) are sensitive to noise of vibration signals, degrading classification accuracy. To solve this problem, this paper proposes spectral envelope cepstral coefficients (SECC) analysis, where a 4-step filter bank based on spectral envelopes of vibration signals is used: (1) a linear predictive coding (LPC) algorithm is used to specify spectral envelopes of all faulty vibration signals, (2) all envelopes are averaged to get general spectral shape, (3) a gradient descent method is used to find extremes of the average envelope and its frequencies, (4) a non-overlapped filter is used to have centers calculated from distances between valley frequencies of the envelope. This 4-step filter bank is then used in cepstral coefficients computation to extract feature vectors. Finally, a multi-layer support vector machine (MLSVM) with various sigma values uses these special parameters to identify faulty types of induction motors. Experimental results indicate that the proposed extraction method outperforms other feature extraction algorithms, yielding more than about 99.65% of classification accuracy.

Distribution and characteristics of Quaternary faults in the coastal area of the southeastern Korean Peninsula: Results from a marine seismic survey (해양 탄성파 탐사 결과로 본 한반도 남동부연안 4기 단층의 분포와 특성)

  • Kim Han-Joon;Jou Hyeong-Tae;Hong Jong-Kuk;Park Gun-Tae;Nam Sang-Heon;Cho Hyun-Moo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.46-66
    • /
    • 2002
  • High-resolution multichannel seismic data were collected in the coastal area near the Gori nuclear power plant to investigate Quaternary fault pattern and timing. A 12 channel streamer, a sparker, and a portable recorder were used for data acquisition. Because the group interval of the streamer was 6.25 m and the sparker can generate acoustic waves with the frequency content of up to 500 Hz, the data show a significant improvement both in horizontal and vertical resolution. The area surveyed is covered with 30-40 m thick Holocene sediments that constitute the mud belt along the southeastern coast of Korea. The survey area is characterized by the well discriminated Pleistocene and Holocene boundary and shallow gas-charged zones. A number of Quaternary faults were found in the sediment column, that are nearly vertical and extend north-south. The Quaternary faults, arranged at a spacing of a few hundred meters, suggest that they were formed in response to compression, although some of them reveal extensional characteristics. Locally, faults disrupt Incised-channel fills that are interpreted to have formed in the early stage of transgression after the beginning of the Holocene. Seismic sections suggest that shallow gas in the mud belt sediments made its way upward through the fractured fault planes. The tectonism responsible for the opening of the East Sea has not persisted since the late Miocene, but vigorous Quaternary faulting activity in the vicinity of the southeastern Korean Peninsula indicates that tectonic stability has yet to be achieved in this region underlain by the hotter than normal mantle.

  • PDF

Cause of Rockfall at Natural Monument Pohang Daljeon-ri Columnar Joint (천연기념물 포항 달전리 주상절리의 낙석 발생원인)

  • Kim, Jae Hwan;Kong, Dal-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.497-510
    • /
    • 2022
  • Monthly monitoring, 3D scan survey, and electrical resistivity survey were conducted from January 2018 to August 2022 to identify the cause of rockfall occurring in Daljeon-ri Columnar Joint (Natural Monument No. 415), Pohang. A total of 3,231 rocks fell from the columnar joint over the past 5 years, and 1,521 (47%) of the falling rocks were below 20 cm in length, 978 (30.3%) of 20-30 cm, and 732 (22.7%) of rocks over 30 cm. While the number of rockfalls by year has decreased since 2018, the frequency of rockfalls bigger than 30 cm tends to increase. Large-scale rockfalls occurred mainly during the thawing season (March-April) and the rainy season (June-July), and the analysis of the relationship between cumulative rainfall and rockfall occurrence showed that cumulative rainfall for 3 to 4 days is also closely related to the occurrence of rockfall. Smectite and illite, which are expansible clay minerals, were observed in XRD analysis of the slope material (filling minerals) in the columnar joint, and the presence of a fault fracture zone was confirmed in the electrical resistivity survey. In addition, the confirmed fault fracture zone and the maximum erosion point analyzed through 3D precision measurement coincided with the main rockfall occurrence point observed by the BTC-6PXD camera. Therefore, the main cause of rockfall at Daljeon-ri columnar joint in Pohang is a combination of internal factors (development of fault fracture zones and joints, weathering of rocks, presence of expansive clay minerals) and external factors (precipitation, rapid thawing phenomenon), resulting in large-scale rockfall. Meanwhile, it was also confirmed that the Pohang-Gyeongju earthquake, which was continuously raised, was not the main cause.

Study on Stratigraphy, Structural Geology and Hydrocarbon Potentials of the Cretaceous Strata, Northeastern Iraq (이라크 북동부 지역 백악기 퇴적층의 층서, 구조지질 및 탄화수소 부존 유망성 연구)

  • Lee, Taecheol;Han, Seungwoo;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.381-393
    • /
    • 2014
  • Seismic reflection data are integrated with fieldwork data in order to understand startigraphy, structural geology and hydrocarbon potentials of Cretaceous strata in the Mesopotamian basin, Northeastern Iraq. Cretaceous strata in the basin divided into the Qamchuqa, Kometan, Bekhme and Shiranish formations, which are composed of carbonates deposited in shallow marine environment. The geological structures in these formations are mainly recognized as thrusts, detachment folds, fault propagation folds and fault bend folds. As well, NW-SE trending fractures are regularly developed, and are horizontal or perpendicular to the structures. The distribution and frequency of fractures are related to the development of the thrusts. In terms of hydrocarbon potentials, Cretaceous strata in the basin have limited capacities for source rocks and seal rocks due to the lack of organic carbon content and the well-developed fractures, respectively. Although these carbonates have limited primary porosity, however, development of the secondary porosity derived from the fractures contributes to enhance the reservoir quality. Most important factor for the reservoir quality of Cretaceous strata seems to be the frequency and connectivity of fractures relative to locations of folds and faults. The results delineated in this study will use as reference for recognizing stratigraphy and structures of Cretaceous strata and will provide useful information on hydrocarbon potentials of Cretaceous strata in the Mesopotamian basin, NE Iraq.