• Title/Summary/Keyword: Fault Frequency

Search Result 605, Processing Time 0.024 seconds

An Architecture-based Multi-level Self-Adaptive Monitoring Method for Software Fault Detection (소프트웨어 오류 탐지를 위한 아키텍처 기반의 다계층적 자가적응형 모니터링 방법)

  • Youn, Hyun-Ji;Park, Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.568-572
    • /
    • 2010
  • Self-healing is one of the techniques that assure dependability of mission-critical system. Self-healing consists of fault detection and fault recovery and fault detection is important first step that enables fault recovery but it causes overhead. We can detect fault based on model, the detection tasks that notify system's behavior and compare normal behavior model and system's behavior are heavy jobs. In this paper, we propose architecture-based multi-level self-adaptive monitoring method that complements model-based fault detection. The priority of fault detection per component is different in the software architecture. Because the seriousness and the frequency of fault per component are different. If the monitor is adapted to intensive to the component that has high priority of monitoring and loose to the component that has low priority of monitoring, the overhead can be decreased and the efficiency can be maintained. Because the environmental changes of software and the architectural changes bring the changes at the priority of fault detection, the monitor learns the changes of fault frequency and that is adapted to intensive to the component that has high priority of fault detection.

An Automatic Diagnosis for Rotor Bar Faults using Park's vector Pattern (팍스벡터 패턴을 이용한 회전자 바 고장 자동 진단)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Yang, Chul-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.361-363
    • /
    • 2007
  • In this paper, an auto-diagnosis method of rotor bar fault for small induction motor is suggested. Usually FFT of stator currents are given the good results, but to detect the fault, slip is needed for calculating the feature frequency. The slip is varied as the load is changed. So in this paper, some alternative method for estimating the load is suggested. This method is based on the Park's vector pattern. The magnitudes of the feature frequency are compared with the threshhold that is predefined in the bounded range of load. The healthy rotor, single rotor bar fault and double rotor bar fault are tested with no load, 25%, 50%, 75%, and 100% rated load. From 50% to 100% rated load case, the rotor bar faults are detectable using indirect estimation of the load and the comparing the magnitudes of feature frequency. The no load case and under 40% rated load case, rotor fault are un detectable.

  • PDF

A New Method to Detect Inner/Outer Race Bearing Fault Using Discrete Wavelet Transform in Frequency-Domain

  • Ghods, Amirhossein;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.63-64
    • /
    • 2013
  • Induction motors' faults detection is almost a popular topic among researchers. Monitoring the output of motors is a key factor in detecting these faults. (Short-time) Fourier, (continuous, discrete) wavelet, and extended Park vector transformations are among the methods for fault detection. One major deficiency of these methods is not being able to detect the severity of faults that carry low energy information, e.g. in ball bearing system failure, there is absolutely no way to detect the severity of fault using Fourier or wavelet transformations. In this paper, the authors have applied the Discrete Wavelet Transform (DWT) frequency-domain analysis to detect bearing faults in an induction motor. In other words, in discrete transform which the output signal is decomposed in several steps and frequency resolution increases considerably, the frequency-band analysis is performed and it will be verified that first of all, fault sidebands become more recognizable for detection in higher levels of decomposition, and secondly, the inner race bearing faults turn out easier in these levels; and all these matter because of eliminating the not-required high energy components in lower levels of decomposing.

  • PDF

Estimation Method of Cable Fault Location in Rocket Motors Using M-sequence Signals (M시퀀스 신호를 이용한 로켓 추진기관 케이블 결함 위치 추정 기법)

  • Son, Ji-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.84-92
    • /
    • 2020
  • This paper describes the estimation method of cable fault location in rocket motors using M-sequence (Maximal Length Sequence). In order to estimate the location of a cable fault, three methods have been usually used: TDR (Time Domain Reflectometry), FDR (Frequency Domain Reflectometry), and TFDR (Time-Frequency Domain Reflectometry). However, these methods suffer the disadvantage of requiring users to be close to a test field, which is dangerous. The estimation method of cable fault location using M-sequence is proposed to solve this problem. The proposed method can make use of DAS (Data Acquisition System). The experiments were three cases: damaged, open, and short. The RG-58 coaxial cable was used in the experiments. As a result, the proposed method has better performance than that of conventional methods such as TDR and TFDR.

Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions (그리드/연계선 사고 시 풍력발전단지의 응동 분석)

  • Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Lee, Sang-Cheol;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

Fault Diagnosis Method of Permanent Magnet Synchronous Motor for Electrical Vehicle

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.413-420
    • /
    • 2016
  • The permanent magnet synchronous motor has high efficiency driving performance and high power density output characteristics compared with other motors. In addition, it has good regenerative operation characteristics during braking and deceleration driving condition. For this reason, permanent magnet synchronous motor is generally applied as a power train motor for electrical vehicle. In permanent magnet synchronous motor, the most probable causes of fault are demagnetization of rotor's permanent magnet and short of stator winding turn. Therefore, the demagnetization fault of permanent magnet and turn fault of stator winding should be detected quickly to reduce the risk of accident and to prevent the progress of breakdown of power train system. In this paper, the fault diagnosis method using high frequency low voltage injection was suggested to diagnose the demagnetization fault of rotor permanent magnet and the turn fault of stator winding. The proposed fault diagnosis method can be used to check the faults of permanent magnet synchronous motor during system check-up process at vehicle starting and idling stop mode. The feasibility and usefulness of the proposed method were verified by the finite element analysis.

A Study for the Improvement of Fault Detection on Fault Indicator using DWT and Neural Network (신경회로망과 DWT를 이용한 고장표시기의 고장검출 개선에 관한 연구)

  • Hong, Dae-Seung;Yim, Hwa-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.46-48
    • /
    • 2007
  • This paper presents research about improvement of fault detection algorithm in FRTU on the feeder of distribution system. FRTU(Feeder Remote Terminal Unit) is applied to fault detection schemes for phase fault, ground fault, and cold load pickup and Inrush restraint functions distinguish the fault current and the normal load current. FRTU is occurred FI(Fault Indicator) when current is over pick-up value also inrush current is occurred FRTU indicate FI. Discrete wavelet transform(DWT) analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate inrush current from the fault status by a gradient descent method. In this paper, fault detection is improved using voltage monitoring system with DWT and neural network. These data were measured in actual 22.9kV distribution system.

  • PDF

Control Algorithm Development for an Arc Current Interruption (아크 전류 차단을 위한 제어알고리즘 개발)

  • 반기종;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.166-172
    • /
    • 2004
  • Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this Paper, arc current control algorithm is designed for the interruption of arc fault current which is occurred in the low voltage network. This arc Is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and high frequency. Conventional control algorithm does not have the arc current interrupt function. Hence, Control algorithm of arc current is designed for the interruption of arc fault current which has the modified arc characteristics.

Arc Fault Circuit Interruption Design

  • Kang, C.S.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.384-386
    • /
    • 2006
  • In this paper, arc current controller is designed for the interruption of arc fault current which is occurred in the low voltage network. Arc in electrical network have the characteristics of low current, high impedance and high frequency. Conventional controller does not have the arc current interrupt function. Hence, arc current controller is designed for the interruption of arc fault current.

  • PDF

Application of geophysical methods to determine the extent of the Dongrae Fault in the Oedong-eup area, Gyeongju City (경주시 외동읍 구어리 일대 동래단층 연장성 확인을 위한 물리탐사 적용)

  • Hwang, Hak-Soo;Hamm, Se-Yeong;Lee, Cheol-Woo;Lee, Chung-Mo;Kim, Sung Wook
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.207-215
    • /
    • 2017
  • The northern extension of the Dongrae Fault is inferred to transect the Ulsan Fault in the Gueo-ri area, Oedong-eup, ~15 km SE of Gyeongju City, Gyeongbuk province, S Korea. We conducted geological and geophysical (magnetic, electrical resistivity, and frequency domain electromagnetic) surveys to identify the extent and orientation of the Dongrae Fault in this region. Through joint interpretation of the geological and geophysical data sets, we confirm the presence of the Dongrae Fault and determine its strike ($N14^{\circ}E$). The Dongrae Fault is thought to cross the Ulsan Fault near Ipsil Bridge in the Gwangeo-ri area. Geophysical surveying revealed a fault damage zone that widens to the south, with a typical width of >200 m. Geological field surveys did not delineate the geometry of the Dongrae Fault because alluvial deposits overlie the fault in this area.