• Title/Summary/Keyword: Fault Diagnosis and Prognosis

Search Result 16, Processing Time 0.018 seconds

Analysis of Domestic Research Trends on Artificial Intelligence-Based Prognostics and Health Management (인공지능 기반 건전성 예측 및 관리에 관한 국내 연구 동향 분석)

  • Ye-Eun Jeong;Yong Soo Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.223-245
    • /
    • 2023
  • Purpose: This study aim to identify the trends in AI-based PHM technology that can enhance reliability and minimize costs. Furthermore, this research provides valuable guidelines for future studies in various industries Methods: In this study, I collected and selected AI-based PHM studies, established classification criteria, and analyzed research trends based on classified fields and techniques. Results: Analysis of 125 domestic studies revealed a greater emphasis on machinery in both diagnosis and prognosis, with more papers dedicated to diagnosis. various algorithms were employed, including CNN for image diagnosis and frequency analysis for signal data. LSTM was commonly used in prognosis for predicting failures and remaining life. Different industries, data types, and objectives required diverse AI techniques, with GAN used for data augmentation and GA for feature extraction. Conclusion: As studies on AI-based PHM continue to grow, selecting appropriate algorithms for data types and analysis purposes is essential. Thus, analyzing research trends in AI-based PHM is crucial for its rapid development.

A Study on the Design of Control Logic for Wind Turbine Simulator having Similarity with 3MW Class Wind Turbine (3MW급 풍력터빈을 모사한 풍력터빈 시뮬레이터 제어로직 설계에 관한 연구)

  • Oh, Ki-Yong;Lee, Jae-Kyung;Park, Joon-Young;Lee, Jun-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.810-816
    • /
    • 2012
  • As wind power has increased steadily, the importance of a condition monitoring system is being emphasized to maximize the availability and reliability of a wind turbine. To develop the advanced algorithms for fault detection and lifespan estimation, a wind turbine simulator is essential for verification of the proposed algorithms before applying them to a condition diagnosis & integrity prognosis system. The developed new-type simulator in this paper includes blades and various sensors as well as a motor, a gearbox and a generator of which the existing simulators generally consist. It also has similarity with a 3MW class wind turbine and can be used to acquire operational data from various operation conditions. This paper presents a design method of control logic for the wind turbine simulator, which gives a wind generation method and similar dynamic characteristics with the 3MW wind turbine. Finally, the proposed control logic is verified through experiments.

Development of Smart Cargo Level Sensors Including Diagnostics Function for Liquid Cargo Ships (액체운반용 선박을 위한 진단기능을 가지는 스마트 카고 센서 개발)

  • Bae, Hyeon;Kim, Youn-Tai;Park, Dae-Hoon;Kim, Sung-Shin;Choi, Moon-Ho;Jang, Yong-Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.341-346
    • /
    • 2008
  • This paper is to develop a monitoring system with diagnosis for smart cargo sensors that is for management and maintenance of the liquid cargo ships. The main goal of the system is to achieve the total automation system of the cargo sensor. By this study, the active smart sensor for the liquid cargo ships is designed and developed that guarantees high-confidence, stability, and durability. The proposed system consists of a monitoring part of the steam pressure, high-level monitoring, over flowing monitoring, gas monitoring, and tank temperature monitoring. The signals transferred from each unit system are used for sensor diagnosis based on confidence and accuracy. Finally, in this study, the total supervisory monitoring system is developed to maintain and manage the cargo effectively based on fault diagnosis and prognosis of the each sensor system.

A Study for the Development of Fault Diagnosis Technology Based on Condition Monitoring of Marine Engine (선박 엔진의 상태감시 기반 고장진단 기술 개발에 관한 연구)

  • Park, Jae-Cheul;Jang, Hwa-Sup;Jo, Yeon-Hwa
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.230-231
    • /
    • 2019
  • This study is a development on condition based maintenance(CBM) technology which is a core item of future autonomous ships. It is developing to design & installation of condition monitoring system and acquisition & processing of data from ongoing ships for fault prediction & prognosis of engine in operation. The ultimate goal of this study is to develop a predicts and decision support software for marine engine faults. To do this, the FMEA and fault tree analysis of the main engine should be accompanied by the analysis of classification of system, identification of the components, the type of faults, and the cause and phenomenon of the failure. Finally, the CBM system solution software could predict and diagnose the failure of main engine through integrated analysis for bid-data of ongoing ships and engineering knowledge. Through this study, it is possible to pro-actively cope with abnormal signals of engine and to manage efficiently, and as a result, expected that marine accident and ship operation loss during navigation will be prevented in advance.

  • PDF

Rotor Fault Detection of Induction Motors Using Stator Current Signals and Wavelet Analysis

  • Hyeon Bae;Kim, Youn-Tae;Lee, Sang-Hyuk;Kim, Sungshin;Wang, Bo-Hyeun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.539-542
    • /
    • 2003
  • A motor is the workhorse of our industry. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. Different internal motor faults (e.g., inter-turn short circuits, broken bearings, broken rotor bars) along with external motor faults (e.g., phase failure, mechanical overload, blocked rotor) are expected to happen sooner or later. This paper introduces the fault detection technique of induction motors based upon the stator current. The fault motors have rotor bar broken or rotor unbalance defect, respectively. The stator currents are measured by the current meters and stored by the time domain. The time domain is not suitable to represent the current signals, so the frequency domain is applied to display the signals. The Fourier Transformer is used for the conversion of the signal. After the conversion of the signals, the features of the signals have to be extracted by the signal processing methods like a wavelet analysis, a spectrum analysis, etc. The discovered features are entered to the pattern classification model such as a neural network model, a polynomial neural network, a fuzzy inference model, etc. This paper describes the fault detection results that use wavelet decomposition. The wavelet analysis is very useful method for the time and frequency domain each. Also it is powerful method to detect the features in the signals.

  • PDF

Feature Extraction for Bearing Prognostics based on Frequency Energy (베어링 잔존 수명 예측을 위한 주파수 에너지 기반 특징신호 추출)

  • Kim, Seokgoo;Choi, Joo-Ho;An, Dawn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.128-139
    • /
    • 2017
  • Railway is one of the public transportation systems along with shipping and aviation. With the recent introduction of high speed train, its proportion is increasing rapidly, which results in the higher risk of catastrophic failures. The wheel bearing to support the train is one of the important components requiring higher reliability and safety in this aspect. Recently, many studies have been made under the name of prognostics and health management (PHM), for the purpose of fault diagnosis and failure prognosis of the bearing under operation. Among them, the most important step is to extract a feature that represents the fault status properly and is useful for accurate remaining life prediction. However, the conventional features have shown some limitations that make them less useful since they fluctuate over time even after the signal de-noising or do not show a distinct pattern of degradation which lack the monotonic trend over the cycles. In this study, a new method for feature extraction is proposed based on the observation of relative frequency energy shifting over the cycles, which is then converted into the feature using the information entropy. In order to demonstrate the method, traditional and new features are generated and compared using the bearing data named FEMTO which was provided by the FEMTO-ST institute for IEEE 2012 PHM Data Challenge competition.