• 제목/요약/키워드: Fault Diagnosis and Isolation

검색결과 75건 처리시간 0.027초

ART2 신경회로망을 이용한 선형 시스템의 다중고장진단 (Multiple faults diagnosis of a linear system using ART2 neural networks)

  • 이인수;신필재;전기준
    • 제어로봇시스템학회논문지
    • /
    • 제3권3호
    • /
    • pp.244-251
    • /
    • 1997
  • In this paper, we propose a fault diagnosis algorithm to detect and isolate multiple faults in a system. The proposed fault diagnosis algorithm is based on a multiple fault classifier which consists of two ART2 NN(adaptive resonance theory2 neural network) modules and the algorithm is composed of three main parts - parameter estimation, fault detection and isolation. When a change in the system occurs, estimated parameters go through a transition zone in which residuals between the system output and the estimated output cross the threshold, and in this zone, estimated parameters are transferred to the multiple faults classifier for fault isolation. From the computer simulation results, it is verified that when the proposed diagnosis algorithm is performed successfully, it detects and isolates faults in the position control system of a DC motor.

  • PDF

Fuzzy-Bayes Fault Isolator Design for BLDC Motor Fault Diagnosis

  • Suh, Suhk-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.354-361
    • /
    • 2004
  • To improve fault isolation performance of the Bayes isolator, this paper proposes the Fuzzy-Bayes isolator, which uses the Fuzzy-Bayes classifier as a fault isolator. The Fuzzy-Bayes classifier is composed of the Bayes classifier and weighting factor, which is determined by fuzzy inference logic. The Mahalanobis distance derivative is mapped to the weighting factor by fuzzy inference logic. The Fuzzy-Bayes fault isolator is designed for the BLDC motor fault diagnosis system. Fault isolation performance is evaluated by the experiments. The research results indicate that the Fuzzy-Bayes fault isolator improves fault isolation performance and that it can reduce the transition region chattering that is occurred when the fault is injected. In the experiment, chattering is reduced by about half that of the Bayes classifier's.

Fault Diagnosis for Parameter Change Fault

  • Suzuki, Keita;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2183-2187
    • /
    • 2005
  • In this paper we propose a new fault detection and isolation (FDI) method for those faults of parameter change type. First, we design a residual generator based on the ${\delta}$-operator model of the plant by using the stable pseudo inverse system. Second, the parameter change is estimated by using the property of the block Hankel operator. Third, reliability with respect to stability is quantified. Fourth, the limitations for the meaningful diagnosis in our method are given. The numerical examples demonstrate the effectiveness of the proposed method.

  • PDF

불확실성을 고려한 시스템에서의 복합형 이상검출 및 격리 (Hybrid fault detection and isolation for uncertainty system)

  • 유호준;김대우;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1432-1435
    • /
    • 1997
  • This paper proposes a fault detection and isolation metho by combining the parameter estimation method[4] with the observer method[2] to use merits of both methods. To verify the performance of the method proposed some simulations applied to remotely piloted vehicle are performed.

  • PDF

Fault diagnosis using multiple PI observers

  • Kim, Hwan-Seong;Ki, Sang-Bong;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.287-290
    • /
    • 1996
  • Fault diagnosis problem is currently the subject of extensive research and numerous survey paper can be found. Although several works are studied on the fault detection and isolation observers and the residual generators, those are concerned with only the detection of actuator failures or sensor failures. So, the perfect detection and isolation is strongly required for practical applications. In this paper, a, strategy of fault diagnosis using multiple proportional integral (PI) observers including the magnitude of actuator failures is provided. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between actual output and estimated output by a PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple PI observers.

  • PDF

진동데이터 적용 모델기반 이상진단 (Model-based Fault Diagnosis Applied to Vibration Data)

  • 양지혁;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1090-1095
    • /
    • 2012
  • In this paper, we propose a model-based fault diagnosis method applied to vibration data. The fault detection is performed by comparing estimated parameters with normal parameters and deciding if the observed changes can be explained satisfactorily in terms of noise or undermodelling. The key feature of this method is that it accounts for the effects of noise and model mismatch. And we aslo design a classifier for the fault isolation by applying the multiclass SVM (Support Vector Machine) to the estimated parameters. The proposed fault detection and isolation methods are applied to an engine vibration data to show a good performance. The proposed fault detection method is compared with a signal-based fault detection method through a performance analysis.

비례적분(PI) 관측기를 이용한 시스템의 고장진단 (Fault Detection and Isolation of System Using Multiple Pi Observers)

  • Kim, H.S.;Kim, S.B.;Shigeyasu Kawaji
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.41-47
    • /
    • 1997
  • Fault diagnosis problem is currently a subject of extensive research in the control field. Although there are several works on the fault detection and isolation observers and the residual generators, those are con- cerned with only the detection of actuator failures or sensor failures. So, the perfect detection and isolation for the actuator and sensor failures is strongly required in the field of the practical applications. In this paper, a strategy of fault diagnosis using multiple proportional integral (PI) observers including the magnitude of actuator failures is provided. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between actual output and estimated output by a PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple PI observers.

  • PDF

Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks

  • Huang, Hai-Bin;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.1031-1053
    • /
    • 2016
  • The health conditions of in-service civil infrastructures can be evaluated by employing structural health monitoring technology. A reliable health evaluation result depends heavily on the quality of the data collected from the structural monitoring sensor network. Hence, the problem of sensor fault diagnosis has gained considerable attention in recent years. In this paper, an innovative sensor fault diagnosis method that focuses on fault detection and isolation stages has been proposed. The dynamic or auto-regressive characteristic is firstly utilized to build a multivariable statistical model that measures the correlations of the currently collected structural responses and the future possible ones in combination with the canonical correlation analysis. Two different fault detection statistics are then defined based on the above multivariable statistical model for deciding whether a fault or failure occurred in the sensor network. After that, two corresponding fault isolation indices are deduced through the contribution analysis methodology to identify the faulty sensor. Case studies, using a benchmark structure developed for bridge health monitoring, are considered in the research and demonstrate the superiority of the new proposed sensor fault diagnosis method over the traditional principal component analysis-based and the dynamic principal component analysis-based methods.

SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구 (A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network)

  • 이인수;조정환;서해문;남윤석
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

2 단계 상호간섭 다중모델을 이용한 인공위성 고장 검출 (Satellite Fault Detection and Isolation Using 2 Step IMM)

  • 이준한;박찬국;이달호
    • 한국항공우주학회지
    • /
    • 제39권2호
    • /
    • pp.144-152
    • /
    • 2011
  • 본 논문에서는 인공위성 자세제어 시스템의 고장 검출 기법을 제시하였다. 논문에서는 상호간섭 다중모델을 기반으로 벌점을 이용하여 인공위성 자세 시스템 중 구동기의 완전 고장과 구동력 저하 고장을 검출하였다. 제안한 고장 검출 기법은 2단계로 구분되는데, 먼저 11개의 구동기 고장 관련 모델을 구성하여 구동기 고장 검출을 수행한 후, 구동기의 고장이 검출되면 구동기의 고장 특성에 관련된 하위 모델을 생성하여 실제 발생한 고장이 완전 고장인지 구동력 저하 고장인지를 구분하게 된다. 또한 기존에 제안된 상호간섭 다중모델을 이용한 고장 검출 기법과 비교한 결과, 본 논문에서는 병렬로 구성되었던 고장 모델들을 2단계로 구성하고 각 단계별로 차등화된 벌점을 이용함으로써 구동기 고장 검출 시간을 줄였을 뿐만 아니라, 고장의 특성까지 빠르게 구분할 수 있는 장점이 있음을 확인 하였다.