• Title/Summary/Keyword: Fault Detection and Diagnosis

Search Result 458, Processing Time 0.034 seconds

Fault Feature Clarification in the Residual for Fault Detection and Diagnosis of Control Systems

  • Lee, Jonghyo;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.96.3-96
    • /
    • 2002
  • A scheme of clarifying fault feature in the residual is given for model-based fault detection and diagnosis of control systems. It is based on the residual generation using a robust filter and the noise suppresion in test statistics of the residual by multi-scale discrete wavelet transform. By clarifying the fault feature in the residual, the difficulties of existing model based approaches via adopting a threshold can be overcomed and it has advantage of taking the false alarm and missed detection into acount at the same time, which can make the fault detection and diagnosis easy and correct. To show the effectiveness of our approach, the simulation results are illustrated for a linear syste...

  • PDF

The Fault Diagnosis Method of Diesel Engines Using a Statistical Analysis Method (통계적 분석기법을 이용한 디젤기관의 고장진단 방법에 관한 연구)

  • Kim, Young-Il;Oh, Hyun-Kyung;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.247-252
    • /
    • 2006
  • Almost ship monitoring systems are event driven alarm system which warn only when the measurement value is over or under set point. These kinds of system cannot warn until signal is growing to abnormal state that the signal is over or under the set point. therefore cannot play a role for preventive maintenance system. This paper proposes fault diagnosis method which is able to diagnose and forecast the fault from present operating condition by analyzing monitored signals with present ship monitoring system without any additional sensors. By analyzing the data with high correlation coefficient(CC), correlation level of interactive data can be defined. Knowledge base of abnormal detection can be built by referring level of CC(Fault Detection CC. FDCC) to detect abnormal data among monitored data from monitoring system and knowledge base of diagnosis built by referring CC among interactive data for related machine each other to diagnose fault part.

The Fault Diagnosis Method of Diesel Engines Using a Statistical Analysis Method (통계적분석기법을 이용한 디젤기관의 고장진단 방법에 관한 연구)

  • Kim, Young-Il;Oh, Hyun-Gyeong;Cheon, Hang-Chun;Yu, Yung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.281-286
    • /
    • 2005
  • Almost ship monitoring systems are event driven alarm system which warn only when the measurement value is over or under set point. These kinds of system cannot warn while signal is growing to abnormal state until the signal is over or under the set point and cannot play a role for preventive maintenance system. This paper proposes fault diagnosis method which is able to diagnose and forecast the fault from present operating condition by analyzing monitored signals with present ship monitoring system without additional sensors. By analyzing this data having high correlation coefficient(CC), correlation level of interactive data can be understood. Knowledge base of abnormal detection can be built by referring level of CC(Fault Detection CC, FDCC) to detect abnormal data among monitored data from monitoring system and knowledge base of diagnosis built by referring CC among interactive data for related machine each other to diagnose fault part.

  • PDF

Fault Detection and Diagnosis based on Fuzzy Algorithm in the Injection Molding Machine Barrel Temperature (사출 성형기 Barrel 온도에 관한 퍼지알고리즘 기반의 고장 검출 및 진단)

  • 김훈모
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.958-962
    • /
    • 2003
  • We acquired data of injection molding machine in operation and stored the data in database. We acquired the data of injection molding machine for fault detection and diagnosis (FDD) continuously and estimated the fault results with a fuzzy algorithm. Many of FDD are applied to a huge system, nuclear power plant and a computer numerical control(CNC) machine for processing machinery. But, the research of FDD is rare in injection molding machine compare with computer numerical control machine. We appraise the accuracy of the FDD and the limit of the application to the injection molding machine. We construct the fault detection and diagnosis system based on fuzzy algorithm in the injection molding machine. Data of operating injection molding machine are acquired in order to improve the reliability of detection and diagnosis.

Fault Detection and Diagnosis of the Deaerator Level Control System in Nuclear Power Plants

  • Kim Kyung Youn;Lee Yoon Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.73-82
    • /
    • 2004
  • The deaerator of a power plant is one of feedwater heaters in the secondary system, and it is located above the feedwater pumps. The feedwater pumps take the water from the deaerator storage tank, and the net positive suction head(NSPH) should always be ensured. To secure the sufficient NPSH, the deaerator tank is equipped with the level control system of which level sensors are critical items. And it is necessary to ascertain the sensor state on-line. For this, a model-based fault detection and diagnosis(FDD) is introduced in this study. The dynamic control model is formulated from the relation of input-output flow rates and liquid-level of the deaerator storage tank. Then an adaptive state estimator is designed for the fault detection and diagnosis of sensors. The performance and effectiveness of the proposed FDD scheme are evaluated by applying the operation data of Yonggwang Units 3 & 4.

Third Order Sliding Mode Observer based Robust Fault Diagnosis for Robot Manipulators (3 계 슬라이딩 모드 관측기 기반 로봇 고장 진단)

  • Van, Mien;Kang, Hee-Jun;Suh, Young-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.669-672
    • /
    • 2012
  • This paper investigates an algorithm for robust fault diagnosis in robot manipulators. The TOSM (Third Order Sliding Mode observer) provides both theoretically exact observation and unknown fault identification without filtration. The EOI (Equivalent Output Injections) of the TOSM observers can be used as residuals for the problem of fault diagnosis and to identify the unknown faults. The obtained fault information can be used for fault detection, isolation as well as fault accommodation to the self-correcting failure system. The computer simulation results for a PUMA 560 robot are shown to verify the effectiveness of the proposed strategy.

Fault diagnosis using multiple PI observers

  • Kim, Hwan-Seong;Ki, Sang-Bong;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.287-290
    • /
    • 1996
  • Fault diagnosis problem is currently the subject of extensive research and numerous survey paper can be found. Although several works are studied on the fault detection and isolation observers and the residual generators, those are concerned with only the detection of actuator failures or sensor failures. So, the perfect detection and isolation is strongly required for practical applications. In this paper, a, strategy of fault diagnosis using multiple proportional integral (PI) observers including the magnitude of actuator failures is provided. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between actual output and estimated output by a PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple PI observers.

  • PDF

Integrated Fault Diagnosis Algorithm for Driving Motor of In-wheel Independent Drive Electric Vehicle (인휠 독립 구동 전기 자동차의 구동 모터 통합 고장 진단 알고리즘)

  • Jeon, Namju;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.99-111
    • /
    • 2016
  • This paper presents an integrated fault diagnosis algorithm for driving motor of In-wheel independent drive electric vehicle. Especially, this paper proposes a method that integrated the high level fault diagnosis and the low level fault diagnosis in order to improve a robustness and performance of the fault diagnosis system. The high level fault diagnosis is performed using the vehicle dynamics analysis and the low level fault diagnosis is carried using the motor system analysis. The validity of the high level fault diagnosis algorithms was verified through $Carsim^{(R)}$ and MATLAB/$Simulink^{(R)}$ cosimulation and the low level fault diagnosis's validity was shown by applying it to a MATLAB/$Simulink^{(R)}$ interior permanent magnet synchronous motor control system. Finally, this paper presents a fault diagnosis strategy by combining the high level fault diagnosis and the low level fault diagnosis.

A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network (SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구)

  • Lee, In-Soo;Cho, Jung-Hwan;Seo, Hae-Moon;Nam, Yoon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

Research Status on Machine Learning for Self-Healing of Mobile Communication Network (이동통신망 자가 치유를 위한 기계학습 연구동향)

  • Kwon, D.S.;Na, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.30-42
    • /
    • 2020
  • Unlike in previous generations of mobile technology, machine learning (ML)-based self-healing research trend are currently attracting attention to provide high-quality, effective, and low-cost 5G services that need to operate in the HetNets scenario where various wireless transmission technologies are added. Self-healing plays a vital role in detecting and mitigating the faults, and confirming that there is still room for improvement. We analyzed the research trend in self-healing framework and ML-based fault detection, fault diagnosis, and fault compensation. We propose that to ensure that self-healing is a proactive instead of being reactive, we have to design an ML-based self-healing framework and select a suitable ML algorithm for fault detection, diagnosis, and outage compensation.