• Title/Summary/Keyword: Fault Current Discrimination

Search Result 27, Processing Time 0.022 seconds

A Study on the Algorithm for Fault Discrimination in Transmission Lines Using Neural Network and the Variation of Fault Currents (신경회로망과 고장전류의 변화를 이용한 고장판별 알고리즘에 관한 연구)

  • Yeo, Sang-Min;Kim, Chul-Hwan;Choi, Myeon-Song;Song, Oh-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.366-368
    • /
    • 2000
  • When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper proposes the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.

  • PDF

Discrimination Method of Internal and External Fault of Current Differential Relay using Instantaneous Value of Current in Case of Fault with One end CT Saturation (편단 CT 포화 고장 발생시 양단 전류 순시치를 이용한 전류차동계전기의 내·외부 고장위치 판별방안)

  • Lee, Myoung-Hee;Choi, Hae-Sul;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1801-1806
    • /
    • 2012
  • This paper presents a simple and practical method which enables to prevent malfunction of protection relay due to differential current caused by one end CT saturation in case of external fault. This method uses difference of magnitude(instantaneous value) between the both end current just before the occurrence of differential current without a separate method to CT staturation detection. One end CT saturation is simulated by current transformer model using type-96 component and the presented method is verified by using EMTP MODELS with respect to internal and external fault with one end CT staturation. The presented method distinguished rightly bewteen external and internal fault with one end CT saturation. This information can be used to prevent malfunction of current differential protection relay in case of external fault. And this method is not affected by sampling rate and has no calculation burden, so it will be applicable to differential current protection relay with ease.

Protective Relaying Algorithm for Transformer Using Neuro-Fuzzy based on Wavelet Transform (웨이브렛 변환 기반 뉴로-펴지를 이용한 변압기 보호계전 알고리즘)

  • Lee Jong-Beom;Lee Myoung-Rhun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.242-250
    • /
    • 2005
  • This paper proposes a new protective relaying algorithm using Neuro-Fuzzy and wavelet transform. To organize advanced nuero-fuzzy algorithm, it is important to select target data reflecting various transformer transient states. These data are made of changing-rates of Dl coefficient and RSM value within half cycle after fault occurrence. Subsequently, advanced neuro-fuzzy algorithm is obtained by converging the target data. As a result of applying the advanced neuro-fuzzy algorithm, discrimination between internal fault and inrush is correctly distinguished within 1/2 after fault occurrence. Accordingly, it is evaluated that the proposed algorithm can effectively protect a transformer by correcting discrimination between winding fault and inrushing state.

An Application Fuzzy-Neural Network to a Discrimination of Fault Current for Transmission System (송전계통 고장전류 판별을 위한 퍼지 신경망 적용)

  • Jeong, Jong-Won;Lee, Joon-Tark;Wang, Yong-Peel
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.363-366
    • /
    • 2007
  • This paper demonstrates a novel application of Fuzzy C-Mean(FCM) to identify the causes of ground faults in Transmission system. The discrimination scheme which can automatically recognize the fault causes is proposed using artificial neural networks. By using the actual fault data, it is shown that the proposed method provides satisfactory results for identifying the fault causes.

  • PDF

Fault Discrimination of Power Transformers using Vibration Signal Analysis (진동 신호 분석을 이용한 전력용 변압기의 고장 판별)

  • Yoon, Yong-Han;You, Chi-Hyoung;Kim, Jae-Chul;Chung, Chan-Soo;Lee, Jung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • In power transformers, vibration signals can occur at winding and core due to the change of current, voltage, and temperature and the deformation of winding and core. The deformation of winding and core occurs electromagnetic force induced by fault current in power systems. There firem the changes of vibration signals can be very different in normal or fault states of power transformers. We edtect and analyze the changes of vibration signals and use them as a tool for fault diagnosis of power transformers. This paper presents fault discriminating polliblility using the changes of fundamental waves and higher harmonics in power transformers. We showed the fault discriminating functions that are made at each case ; normal state and fault state. These functions are tested by the detected vibration signals, and we showed that the proposed method can discriminate the state of power transformers.

  • PDF

Advanced Algorithm for IED of Stator Winding Protection of Generator System (발전기시스템의 고정자보호 IED를 위한 개선된 알고리즘)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.91-95
    • /
    • 2008
  • The large AC generator fault may lead to large impacts or perturbations in power system. The generator protection control systems in Korea have been imported and operated through a turn-key from overseas entirely. Therefore a study of the generator protection field has in urgent need for a stable operation of the imported goods. In present, the algorithm using the current ratio differential relaying based DFT for stator winding protection or a fault detection had been applied that of internal fault protection of a generator. the DFT used for the analysis of transient state signal conventionally had defects losing a time information in the course of transforming a target signal to frequency domain. In this paper, the discrete wavelet transform (DWT) was applied a fault detection of the generator being superior to a transient state signal analysis and being easy to real time realization. The fault signals after executing a terminal fault modeling collect using a MATLAB package, and calculate the wavelet coefficients through the process of a muiti-level decomposition (MLD). The proposed algorithm for a fault detection using the Daubechies WT (wavelet transform) was executed with a C language and the commend line function for the real time realization after analyzing MATLAB's graphical interface. The advanced technique had improved faster a speed of fault discrimination than a conventional DFR based on DFT.

Identification of Inrush and Internal Fault in Indirect Symmetrical Phase Shift Transformer Using Wavelet Transform

  • Bhasker, Shailendra Kumar;Tripathy, Manoj;Kumar, Vishal
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1697-1708
    • /
    • 2017
  • This paper proposes an algorithm for the differential protection of an Indirect Symmetrical Phase Shift Transformer (ISPST) by considering the different behaviors of the compensated differential current under internal fault and magnetizing inrush conditions. In this algorithm, a criterion function is defined which is based on the difference of amplitude of the wavelet transformation over a specific frequency band. The function has been used for the discrimination between three phase magnetizing inrush and internal fault condition and requires less than a quarter cycle after disturbance. This method is independent of any coefficient or threshold values of wavelet transformation. The merit of this algorithm is demonstrated by the simulation of different faults in series and excitation unit and magnetizing inrush with varying switching conditions on ISPST using PSCAD/EMTDC. Due to unavailability of in-field large interconnected transformers for such a large number of destructive tests, the results are further verified by Real Time Digital Simulator (RSCAD/RTDS). The proposed algorithm has been compared with the conventional harmonic restraint based method that justifies the application of wavelet transform for differential protection of ISPST. The proposed algorithm has also been verified for different rating of ISPSTs and satisfactory results were obtained.

Protective Algorithm for Transformer Using Nuro-Fuzzy (뉴로-퍼지를 이용한 변기 보호 알고리즘)

  • Lee, Myoung-Rhun;Lee, Jong-Beom;Hong, Dong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.299-302
    • /
    • 2002
  • The second harmonic component is commonly used for blocking differential relay in Power transformers. However it is difficult to distinguish between inrush and internal winding fault with differential current protective relaying. This paper proposed a new method using nuro-fuzzy. The used data in nuro-fuzzy algorithm are 3-phase primary voltage and fundamental harmonic of differential current. Various states of transformer are simulated using BCTRAN and HYSDAT of EMTP. As a result of applying the algorithm in various cases, the correct discrimination between internal winding fault and inrush performed.

  • PDF

Protecive Algorithm for Transformer Using Nuro-Fuzzy System based on HCM (HCM기반 뉴로-교지 시스템을 이용한 변압기 보호 알고리즘)

  • Lee, Myoung-Rhun;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.552-554
    • /
    • 2003
  • The second harmonic component is commonly used for blocking differential relay in power transformers. However, it is difficult to distinguish between inrush and internal winding fault with differential current protective relaying. This paper proposed a new method using Nuro-Fuzzy System based on HCM(Hard C-Means). The proposed system is more objective and systematic than existing model. The data used in input are 3-phase primary voltage and fundamental harmonic of differential current. Various states of transformer are simulated using BCTRAN and HYSDAT of EMTP. As a result of the application of algorithm in various cases, the exact discrimination between internal winding fault and inrush is performed.

  • PDF

The Diagnosis of Squirrel-cage Induction Motor Using Wavelet Analysis and Neural Network (웨이블릿 분석과 신경망을 이용한 농형 유도전동기 고장 진단)

  • Lee, Jae-Yong;Kang, Dae-Seong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • The induction motor is given a great deal of weight on the industry generally. Therefore, the fault of the induction motor may cause the fault to effect another parts or another faults in the whole system as well as in itself. These are accompany with a lose of the reliability in the industrial system. Accordingly to prevent these situation, the scholars have studies the fault diagnosis of the induction motor. In this paper, we proposed the diagnosis system of the induction motor. The method of diagnosis in proposed system is extracted the feature of the current signal by the wavelet transform. These extracted feature is used the automatic discrimination system by the neural network. We experiment the automatic discrimination system using the three faults imitation that often generated in the induction motor. The proposed system have achieved high reliable result with a simple devices about the three faults.

  • PDF