• Title/Summary/Keyword: Fatty acid metabolism

Search Result 569, Processing Time 0.026 seconds

Changes of Fatty Acid Compositions in Hepatic Total Lipids and Phosholipids of Rats Supplemented with Cholesterol and Taurine (콜레스테롤과 타우린보강이 흰쥐 간의 총지방산 및 인지질방산 조성에 미치는 영향)

  • 박태선;오주연;김인숙;엄영숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1253-1261
    • /
    • 1998
  • Effects of dietary cholesterol and taurine supplementation on hepatic total and phospholipid fatty acid compositions were evaluated in rats fed one of the following semisynthetic diets for 5 weeks : control diet(CD, cholesterol free and taurine free diet); high cholesterol diet(HCD, CD+1.5% cho lesterol); high cholesterol, high taurine diet(HCHTD, HCD+1.5% taurine). Diet induced changes in hepatic total fatty acid compositions were very similar to those in hepatic phospholipid fatty acid compositions. The HCD significantly decreased the percentage of total saturated fatty acids(SFA), and increased the percentage of total monounsaturated fatty acids(MUFA) of hepatic total lipids and phospholipids as compared to the values for the control rats(p<0.001). HCHTD significantly elevated the percentage of $\Sigma$SFA and lowered the percentage of $\Sigma$MUFA compared to the values for the HCD(p<0.001). Percentages of hepatic total and phospholipid 18:3$\omega$3, 20:5$\omega$3, 18:2$\omega$6 and 20:3$\omega$6 were significantly higher in rats fed the HCD than the values for the control rats, and the percentages of their elongation and desaturation products(22:5$\omega$3, 22:6$\omega$3, 20:4$\omega$6, 22l:4$\omega$6 and 22: 5$\omega$6) were significantly lower in rats fed the HCD compared to those for the control rats. HCD significantly lowered the Δ5 desaturation(20:3$\omega$6⇒20:4$\omega$6) and Δ4 desaturation(22:4$\omega$6⇒22:5$\omega$6) indices, and the elongation index of $\omega$3 fatty acid(20:5 $\omega$3⇒22:5$\omega$3) in rat liver. HCHTD reversed the cholesterol induced changes in the compositions of $\omega$3 and $\omega$6 fatty acids. These results suggest the possibility that dietary cholesterol and taurine supplementations affect plasma and liver lipid levels, at least in part, by changing the hepatic phospholipid fatty acid compositions and thereby modulating the physical characteristics of the membrane and the activities of microsomal enzymes involved in lipid metabolism.

  • PDF

Swim Training Improves Fitness in High Fat Diet-fed Female Mice

  • Jun, Jong-Kui;Lee, Wang-Lok;Lee, Young-Ran;Jeong, Sun-Hyo
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.151-159
    • /
    • 2010
  • The peroxisome proliferator-activated receptor $\alpha$ (PPAR$\alpha$) is a nuclear transcription factor that plays a central role in lipid metabolism and obesity. Exercise also is a powerful modifier of the manifestations of the lipid metabolism and obesity in animal models and humans with obesity and metabolic syndrome. However, effects of exercise on lipid metabolism and obesity in normal-weight younger female subjects, having functional ovaries and not metabolic disease, remain unexplained. To explore the effects of exercise on the development of obesity and its molecular mechanism in high fat diet-fed female C57BL/6J mice, we experimented the effects of swim training on body weight, adipose tissue mass, serum lipid levels, morphological changes of adipocytes and the expression of PPAR$\alpha$ target genes involved in fat oxidation in skeletal muscle tissue of female C57BL/6J mice. Swim-trained mice had significantly decreased body weight, adipose tissue mass, serum triglycerides compared with female control mice. Histological studies showed that swim training significantly decreased the average size of adipoctyes in parametrial adipose tissue. Swim training did not affect the expression of PPAR$\alpha$ mRNA in skeletal muscle. Concomitantly, swim training did not increase mRNA levels of PPAR$\alpha$ target genes responsible for fatty acid $\beta$-oxidation, such as carnitine palmitoyltransferase 1, medium chain acyl-CoA dehydrogenase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, and thiolase in skeletal muscle. In conclusion, these results indicate that swim training regulates lipid metabolism and obesity in high fat diet fed-female mice although swim training did not increase mRNA levels of PPAR$\alpha$ target genes involved in fatty acid $\beta$-oxidation in skeletal muscle, suggesting that swim training may prevent obesity and improve fitness through other mechanisms in female with ovaries, not through the activation of skeletal muscle PPAR$\alpha$.

Effects of Ramulus mori Extract on Obesity and Lipid Metabolism in High Fat Diet Rats (상지추출물이 고지방식이에 의한 체중 변화와 지질대사에 미치는 영향)

  • 김현수;정지천
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.64-72
    • /
    • 2002
  • Objective: Ramulus mori (RM) has been known to be effective for the treatment of obesity. To show the effectiveness of RM in a more scientific way, RM extract was prepared and evaluated in high fat diet rats by measuring the changes of body weight and lipid metabolism as described briefly below. Methods: 200 g of crushed RM was extracted withmethyl alcohol. The extract was evaporated under reduced pressure to give 33.4 g. For 10 weeks, control group rats were fed a high fat diet, while the test group rats were fed with the same diet plus RM extract. The normal group was fed with a normal diet. 150 mg of RM extract per 1 kg of body weight was added to the diet in the test group rats. Results: The control group rats on the high fat diet gained weight significantly, whereas the test group rats on the high fat diet plus RM extract gamed less weight. The significant increase of liver weight caused by the high fat diet was also inhibited by the RM extract treatment. Total lipid, triglyceride and total cholesterol levels of serum in the high fat diet rats were remarkably increased, whereastheir levels on the high fat diet plus RM extract were less increased. While serum HDL-cholesterol levels were remarkably decreased in the high fat diet, its level was less decreased in the high fat diet plus RM extract. Furthermore, we observed that the activities of hepatic acetyl-CoA carboxylase and fatty acid synthetase increased under the high fat diet, while their activities under the high fat diet plus RM extract were getting back nearly to the normal levels of the normal diet rats. Conclusions: These result show that the obesity caused by a high fat diet was effectively inhibited by an RM extract. Our results also showed that the abnormal lipid metabolism caused by a high fat diet was effectively cured by adding RM extract.

  • PDF

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

Multiomics analyses of Jining Grey goat and Boer goat reveal genomic regions associated with fatty acid and amino acid metabolism and muscle development

  • Zhaohua Liu;Xiuwen Tan;Qing Jin;Wangtao Zhan;Gang Liu;Xukui Cui;Jianying Wang;Xianfeng Meng;Rongsheng Zhu;Ke Wang
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.982-992
    • /
    • 2024
  • Objective: Jining Grey goat is a local Chinese goat breed that is well known for its high fertility and excellent meat quality but shows low meat production performance. Numerous studies have focused on revealing the genetic mechanism of its high fertility, but its highlighting meat quality and muscle growth mechanism still need to be studied. Methods: In this research, an integrative analysis of the genomics and transcriptomics of Jining Grey goats compared with Boer goats was performed to identify candidate genes and pathways related to the mechanisms of meat quality and muscle development. Results: Our results overlap among five genes (ABHD2, FN1, PGM2L1, PRKAG3, RAVER2) and detected a set of candidate genes associated with fatty acid metabolism (PRKAG3, HADHB, FASN, ACADM), amino acid metabolism (KMT2C, PLOD3, NSD2, SETDB1, STT3B, MAN1A2, BCKDHB, NAT8L, P4HA3) and muscle development (MSTN, PPARGC1A, ANKRD2). Several pathways have also been detected, such as the FoxO signaling pathway and Apelin signaling pathway that play roles in lipid metabolism, lysine degradation, N-glycan biosynthesis, valine, leucine and isoleucine degradation that involving with amino acid metabolism. Conclusion: The comparative genomic and transcriptomic analysis of Jining Grey goat and Boer goat revealed the mechanisms underlying the meat quality and meat productive performance of goats. These results provide valuable information for future breeding of goats.

Evaluation of carcass traits, meat quality and the expression of lipid metabolism-related genes in different slaughter ages and muscles of Taihang black goats

  • Amin Cai;Shiwei Wang;Pengtao Li;Zhaohui Yao;Gaiying Li
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1483-1494
    • /
    • 2024
  • Objective: This study was conducted to investigate the effect of slaughter age on carcass traits, meat quality, and the relative mRNA levels of lipid metabolism-related genes in different muscles of Taihang black goats. Methods: In this study, the triceps brachii (TB), longissimus dorsi (LD) and gluteus (GL) muscles of 15 grazing Taihang black goats slaughtered at the age of 2, 3, and 4 (designated as 2-year-old, 3-year-old, and 4-year-old, respectively) were collected. The differences in carcass shape, meat quality, amino acid composition and lipid metabolism gene expression among Taihang black goats of different ages and from different plant parts were compared. Results: Compared with goats at other ages, goats slaughtered at the age of 4 had greater live and carcass weights, meat weights, bone weights and skin areas (p<0.05). LD in the 4-years-old had the lowest cooking loss and moisture content. The crude protein content in the LD of 2-year-old was significantly greater than that in the other age group, and at the age of 2, the LD had the highest crude protein content than TB and GL. The highest fat content was in LD, followed by TB, for goats slaughtered at the age of 4. Eight out of 9 essential amino acids had higher content in the TB compared with other muscles, regardless of age. The total essential amino acid content was highest in the 4-year-old and lowest in the GL muscle at the age of 3. The sterol regulatory element-binding protein-1c (SREBP-1c) and adipose triglyceride lipase (ATGL) genes were significantly more abundant in the TB muscle than in the other muscles for goats slaughtered at the age of 2. At the age of 4, the ATGL and peroxisome proliferator-activated receptor γ (PPARγ) genes were significantly more abundant in the GL than in the LD, while the fatty acid synthase (FAS) genes were significantly less abundant in the GL than in the other muscles. Similarly, compared with those in goats of other ages, the relative mRNA expression levels of the FAS and heart-type fatty acid binding protein (H-FABP) genes in goats slaughtered at the age of 4 were the highest, and the relative mRNA expression of the PPARγ gene was the lowest (p<0.05). The relative mRNA expression of the H-FABP and FAS genes was positively correlated with the intramuscular fat (IMF) content, while the relative mRNA expression levels of the PPARγ and ATGL genes was negatively correlated with the IMF content. Conclusion: Overall, a better nutritional value was obtained for TB from 4-year-old goats, in which the total essential amino acid and fat contents were greater than those of other muscles. The comprehensive action of lipid metabolism genes was consistent with that of the IMF content, among which the FAS, H-FABP, PPARγ, and ATGL genes had positive and negative effects on the process of IMF deposition in Taihang black goats.

Effects fo Nutritional Status of Korean Adults on Lipid Metabolism with Age (연령증가에 따른 한국성인의 영양섭취 상태가 지방대사에 미치는 영향)

  • 이혜양
    • Journal of Nutrition and Health
    • /
    • v.27 no.1
    • /
    • pp.23-45
    • /
    • 1994
  • It has been recently reported that degenerative diseases are increasing rapidly in many other countries as well as in Korea according to expansion of life expectancy, economic development and dietary patterns. The aim of this study was to investigate changes in lipid metabolism with age, to determine which dietary factors affect the serum lipid profiles, and to compare Korean and western diets. With clinically normal participants(made 60, female 63), this study was carried out in three phases : 1) to analyze blood lipid levels with age, 2) to analyze the effects of different dietary intakes on blood lipid levels according to age, and 3) to compare the effects of different food intakes on blood lipids between eastern and western coutries. The results are follows : 1) Mean serum values of triglyceride and cholesterol reached a peak level at the age of 50-60 years, although men has higher levels than women at earlier ages. LDL cholesterol percentage increased sharply after 50 years and continued to 70 years. 2) Differences of dietary calorie intake including carbohydrate, total fat and animal fat affected serum lipid profiles, such that high intake groups generally showed higher triglyceride and cholesterol values than the lower intake groups. 3) Compared with Americans(45%), Koreans consumed carbodydrates at 65% of their calorie intake. At this carbohydrate level dietary fatty acid P/S and W-6/W-3 ratio were 1.1 and 6, this could make Koreans continue this dietary pattern composed of carbohydrate at 65% of total calorie intake, and P/S ratio of fatty acid at 1 to 2.

  • PDF

Effect on the Change of Lipid Metabolism in Rat by Fed the Honey (벌꿀 섭취가 흰쥐의 지질대사 변화에 끼치는 영향)

  • 정동현;백승화
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.2
    • /
    • pp.201-212
    • /
    • 1996
  • The purpose of this study was to find an effect of honey on the lipid metabolism of Sprague Dawley rats. All experimental rats were fed ad libitum, for seven weeks, 68% saccharide diet and 10% or 20% honey from acacia, sumac and miscelllaneous flower honey, respectively, and sucrose. The food efficiency ratio of rat taken diet with honey and high fructose of control group was increased in comparison with the control group. The concentration of cholesterol in serum of rats take총 diet with and high fructose of control group was more increased in comparison with the control and normal group. The concentration of H DL-cholesterol in serum of rats taken sumac honey was increased 57.0% in comparison with the control group, but the concentration of VLDL, LDL-cholesterol in serum of rats taken diet 10PA sumac honey was decreased 48.36% in comparison with the control group. The concentration of phospholipid in serum of rats taken diet with 20% acacia or 10% miscellaneous honey was increased 24.7, 16.25%, respectively, in comparison with the control group. The concentration of free fatty acid in serum of rats taken Inlet with sumac or miscellaneous honey and high fructose was increased in comparison with the comparison with the control group. The concentration supplemented diet with acasia honey was increase in comparison with the control group. The concentration of triglyceride in serum of rat was increased by feeding of honey. The concentration of triglyceride in liver was increased, but the level of phospholipid was decreased by feeding of honey.

  • PDF

Identification of a Novel Function of Extract of Gingko biloba (EGb 761®) as a Regulator of PYY Secretion and FFA4 Activation

  • Kim, Hye Young;Kim, Kyong
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.165-171
    • /
    • 2019
  • Although the functions of a standardized extract of Gingko biloba leaves (EGb $761^{(R)}$) has been reported with regard to neurobiological properties, no attention has been paid to the impact of EGb $761^{(R)}$ on the neuronal regulation of energy homeostasis. To evaluate the hypothesis that EGb $761^{(R)}$ affect the secretion of peptide tyrosine tyrosine (PYY) and the activation of free fatty acid receptor 4 (FFA4), which are involved in the neuronal circuitries that control energy homeostasis by inducing the transfer of information about the influx of energy to the brain, we examined whether EGb $761^{(R)}$ can stimulate PYY secretion in the enteroendocrine NCI-H716 cells and if EGb $761^{(R)}$ can activate FFA4 in FFA4-expressing cells. In NCI-H716 cells, EGb $761^{(R)}$ stimulated PYY secretion and the EGb $761^{(R)}$-induced PYY secretion was involved in the increase in intracellular $Ca^{2+}$ concentration and the activation of FFA4. Furthermore, in FFA4-expressing cells, EGb $761^{(R)}$ activated FFA4. These results suggest that EGb $761^{(R)}$ may affect the control of energy homeostasis via the regulation of PYY secretion and FFA4 activation.

Effects of Perilla Oil and Tuna Oil on Lipid Metabolism and Eicosanoids Production in Rats (들기름과 참치유의 섭취가 흰쥐의 지방대사에 Eicosanoids 생성에 미치는 영향)

  • 김우경
    • Journal of Nutrition and Health
    • /
    • v.29 no.7
    • /
    • pp.703-712
    • /
    • 1996
  • This study planned to compare the effects of source and amount of dietary n-3 fatty acid, tuna oil and perilla oil, on lipid metabolism and eicosanoids production in Spargue-Dawley strain male rats. Weaning rats were fed 5 different experimantal diets for 4 weeks. (S : beef tallow 50%+sesame oil 50%, T1 : beef tallow 50%+sesame oil 40%+tuna oil 10%, T2 : beef tallow 50%+sesame oil 25%+tuna oil 25%, P1 : beef tallow 50%+sesame oil 40%+perilla oil 10%, P2 : beef tallow 50%+sesame oil 25%+perilla oil 25%) Food intake was higher in T2 group than in other groups, but body weight gain and food efficiency tate were not different among groups. Plasma total lipid and triglyceride were significantly lower in groups fed perilla oil as much as groups fed tuna oil than in S. But tuna oil reduced plasma cholesterol level more than perilla oil. Liver total lipid per unit, cholesterol and triglyceride were not affected by dietary fat sources. Peroxisomal $\beta$-oxidation was higher in T1 and T2 than in P1 and P2. Activities of glucose 6 phosphate dehydrogenase and malic enzyme were lower in T1 and T2 than in group fed sesame oil only. Plasma TXB2 was affected by n-3 fatty acid consumption, and it was lower in perilla oil groups as much as tuna oil groups than in S. But 6-keto PGF1$\alpha$ was not different among experimental groups. The results of this study indicated that tuna oil and perilla oil both decreased plasma lipids, however, the mechanism may be different. And tuna oil and perilla oil had a similar effects on eicosanoids production.

  • PDF