• 제목/요약/키워드: Fatty acid metabolism

검색결과 563건 처리시간 0.024초

Synthesis and biodistribution of 18F-labeled α-, β- and ω-fluorohexadecanoic acid

  • Lee, Yun-Sang;Kim, Young Joo;Cheon, Gi Jeong;Jeong, Jae Min
    • 대한방사성의약품학회지
    • /
    • 제4권2호
    • /
    • pp.57-64
    • /
    • 2018
  • ${\omega}-[^{18}F]$-Fluorohexadecanoic acid (FHA) has been used for imaging of fatty acid metabolism of myocardium. To increase retention of radiolabeled fatty acid by blocking ${\beta}$-oxidation, methyl branched analogues have been used. In this experiment, we tried to synthesize 18F-labeled ${\alpha}-$, ${\beta}-$ and ${\omega}-FHA$ for imaging of the myocardial fatty acid metabolism. We synthesized ${\alpha}-$, ${\beta}-$ and ${\omega}$-mesylated methyl hexadecanoates and labeled with $^{18}F$ by reacting with $[^{18}F]$TBAF in acetonitrile at $80^{\circ}C$ for 10 min. Methyl ester group was removed by 1 M NaOH at $80^{\circ}C$ for 5 min. The yields of ${\alpha}-[^{18}F]$ and ${\omega}-[^{18}F]FHA$ were 25.5 and 45.5%, respectively [EOS]. However, ${\beta}-[^{18}F]FHA$ was not labeled at all due to a fast elimination reaction. The biodistribution study in ICR-mice showed that ${\omega}-[^{18}F]FHA$ has higher myocardial uptake and lower liver uptake than ${\alpha}-[^{18}F]FHA$. The electron-withdrawing effect of fluorine at ${\alpha}-$ position is believed to be the major factor affecting the biodistribution.

Effects of Prostaglandin E2 Analogue, Enprostil, on Lipid Metabolism in Mice

  • Kawamoto, N.;Murai, A.;Okumura, J.;Furuse, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권4호
    • /
    • pp.402-407
    • /
    • 1997
  • This study was conducted to investigate the effects of effects of enprostil, a prostaglandin $E_2$, analogue, on liver triacylglycerol content and factors that regulate liver lipid metabolism in mice. Mice received vehicle or $10{\mu}g$ enprostil/kg body weight intraperitoneally every 6 h, and were killed at 0, 6, 12, 18 and 24 h after the first injection. Enprostil significantly lowered liver triacylglycerol content after 12 h of the first injection. However, the peroxisomal ${\beta}$-oxidation activity was inconsistent with the result of liver triacylglycerol content, because its activity was lovered by enprosil. In another experiment, the effect of enprostil on lipid metabolism in mice was investigated in a short period. Mice received $10{\mu}g$ enprostil/kg body weight intraperitoneally, and were killed after 0, 5, 10, 30 and 60 min. After 30 min, malic enzyme activity was significantly increased by the administration of enprostil compared with the activity at 5 min after. No significant changes in liver carnitine palmitoyltransferase and peroxisomal ${\beta}$-oxidation activities were observed. Plasma free fatty acid concentrations were markedly reduced from 5 through 60 min after the administration of enprostil. Consequently, enprostil suppressive effect on liver triacylglycerol concentration might result from the decreased entry of free fatty acid into liver.

단감 과실의 과육 갈변과 세포막 투과성 및 지방산 조성 변화의 관계 (The Relationship among Flesh Browning, Membrane Permeability, and Fatty Acid Composition in Fuyu Persimmon Fruits)

  • 최성진
    • 한국식품저장유통학회지
    • /
    • 제5권1호
    • /
    • pp.35-39
    • /
    • 1998
  • The cell membrane properties in relation to flesh browning of Fuyu persimmon fruits during CA storage were studied. Compared to intact fruits, the flesh tissue of browned fruits showed higher rate of electrolyte leakage, indicating incresed membrane permeability. It could be assumed that the increased membrane permeability results in 1eakage of phenolic compounds from vacuole and their oxidation by contacting with PPO, inducing finally the development of flesh browning. In addition, lower content of fatty acids and higher saturation rate of them were found in browned fruits. In conculusion, it was suggested that the inhibited fatty acid metabolism and fatty acid saturation during CA storage cause membrane Permeability to increase.

  • PDF

Effects of dietary n-6:n-3 polyunsaturated fatty acid ratio on growth performance, blood indexes, tissue fatty acid composition and the expression of peroxisome proliferator-activated receptor gamma signaling related genes in finishing pigs

  • Chen, Jing;Cui, Hongze;Liu, Xianjun;Li, Jiantao;Zheng, Jiaxing;Li, Xin;Wang, Liyan
    • Animal Bioscience
    • /
    • 제35권5호
    • /
    • pp.730-739
    • /
    • 2022
  • Objective: This study investigated the effects of dietary n-6:n-3 polyunsaturated fatty acid (PUFA) ratio on growth performance, blood indexes, tissue fatty acid composition and the gene expression in finishing pigs. Methods: Seventy-two crossbred ([Duroc×Landrace]×Yorkshire) barrows (68.5±1.8 kg) were fed one of four isoenergetic and isonitrogenous diets with n-6:n-3 PUFA ratios of 2:1, 3:1, 5:1, and 8:1. Results: Average daily gain, average daily feed intake and gain-to-feed ratio had quadratic responses but the measurements were increased and then decreased (quadratic, p<0.05). The concentrations of serum triglyceride, total cholesterol and interleukin 6 were linearly increased (p<0.05) with increasing of dietary n-6:n-3 PUFA ratio, while that of high-density lipoprotein cholesterol tended to decrease (p = 0.062), and high-density lipoprotein cholesterol:low-density lipoprotein cholesterol ratio and leptin concentration were linearly decreased (p<0.05). The concentration of serum adiponectin had a quadratic response but the measurement was decreased and then increased (quadratic, p<0.05). The proportion of C18:3n-3 was linearly decreased (p<0.05) in the longissimus thoracis (LT) and subcutaneous adipose tissue (SCAT) as dietary n-6:n-3 PUFA ratio increasing, while the proportion of C18:2n-6 and n-6:n-3 PUFA ratio were linearly increased (p<0.05). In addition, the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and lipoprotein lipase in the LT and SCAT, and adipocyte fatty acid binding protein and hormone-sensitive lipase (HSL) in the SCAT had quadratic responses but the measurements were increased and then decreased (quadratic, p<0.05). The expression of HSL in the LT was linearly decreased (p<0.05) with increasing of dietary n-6:n-3 PUFA ratio. Conclusion: Dietary n-6:n-3 PUFA ratio could regulate lipid and fatty acid metabolism in blood and tissue. Reducing dietary n-6:n-3 PUFA ratio (3:1) could appropriately suppress expression of related genes in PPARγ signaling, and result in improved growth performance and n-3 PUFA deposition in muscle and adipose tissue in finishing pigs.

Polyunsaturated Fatty Acids in Male Ruminant Reproduction - A Review

  • Tran, Len Van;Malla, Bilal Ahmad;Kumar, Sachin;Tyagi, Amrish Kumar
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권5호
    • /
    • pp.622-637
    • /
    • 2017
  • Fatty acids such as n-3 and n-6 polyunsaturated fatty acids (PUFA) are critical nutrients, used to improve male reproductive performance through modification of fatty acid profile and maintenance of sperm membrane integrity, especially under cold shock or cryopreservation condition. Also, PUFA provide the precursors for prostaglandin synthesis and can modulate the expression patterns of many key enzymes involved in both prostaglandin and steroid metabolism. Many studies carried out on diets supplemented with PUFA have demonstrated their capability to sustain sperm motility, viability and fertility during chilling and freezing as well as improving testis development and spermatogenesis in a variety of livestock species. In addition to the type and quantity of dietary fatty acids, ways of addition of PUFA to diet or semen extender is very crucial as it has different effects on semen quality in male ruminants. Limitation of PUFA added to ruminant ration is due to biohydrogenation by rumen microorganisms, which causes conversion of unsaturated fatty acids to saturated fatty acids, leading to loss of PUFA quantity. Thus, many strategies for protecting PUFA from biohydrogenation in rumen have been developed over the years. This paper reviews four aspects of PUFA in light of previous research including rumen metabolism, biological roles, influence on reproduction, and strategies to use in male ruminants.

Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load

  • Niklas, Jens;Bonin, Anne;Mangin, Stefanie;Bucher, Joachim;Kopacz, Stephanie;Matz-Soja, Madlen;Thiel, Carlo;Gebhardt, Rolf;Hofmann, Ute;Mauch, Klaus
    • BMB Reports
    • /
    • 제45권7호
    • /
    • pp.396-401
    • /
    • 2012
  • Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by an accumulation of lipids (triglycerides) in hepatocytes and is often accompanied by high plasma levels of free fatty acids (FFA). In this study, we compared the energy metabolism in acute steatotic and non-steatotic primary mouse hepatocytes. Acute steatosis was induced by pre-incubation with high concentrations of oleate and palmitate. Labeling experiments were conducted using [$U-^{13}C_5$,$U-^{15}N_2$] glutamine. Metabolite concentrations and mass isotopomer distributions of intracellular metabolites were measured and applied for metabolic flux estimation using transient $^{13}C$ metabolic flux analysis. FFAs were efficiently taken up and almost completely incorporated into triglycerides (TAGs). In spite of high FFA uptake rates and the high synthesis rate of TAGs, central energy metabolism was not significantly changed in acute steatotic cells. Fatty acid ${\beta}$-oxidation does not significantly contribute to the detoxification of FFAs under the applied conditions.

Dietary supplementation of Eucommia leaf extract to growing-finishing pigs alters muscle metabolism and improves meat quality

  • Zhenglei Shen;Chuxin Liu;Chuangye Deng;Qiuping Guo;Fengna Li;Qingwu W. Shen
    • Animal Bioscience
    • /
    • 제37권4호
    • /
    • pp.697-708
    • /
    • 2024
  • Objective: The objective of this study was to investigate the influence of dietary supplementation of Eucommia ulmoides leaf extract (ELE) on muscle metabolism and meat quality of pigs with and without pre-slaughter transportation. Methods: In a 43-day feeding experiment, a total of 160 pigs with an initial body weight 60.00±2.00 kg were randomly assigned into four groups in a completely randomized design with 10 replicates. Pigs in groups A and C were fed a basal diet and pigs in groups B and D were fed a basal diet supplemented with 0.5% ELE. Pigs were slaughtered with (group B and D) or without (group A and C) pre-slaughter transport. Muscle chemical composition, postmortem glycolysis, meat quality and muscle metabolome were analyzed. Results: Dietary ELE supplementation had no effect on the proximate composition of porcine muscle, but increased free phenylalanine, proline, citruline, norvaline, and the total free amino acids in muscle. In addition, dietary ELE increased decanoic acid and eicosapentaenoic acid, but decreased heptadecanoic acid, oleic acid, trans-oleic acid, and monounsaturated fatty acids in muscle. Meat quality measurement demonstrated that ELE improved meat water holding capacity and eliminated the negative effects of pre-slaughter transport on meat cooking yield and tenderness. Dietary ELE reduced muscle glycolytic potential, inhibited glycolysis and muscle pH decline in the postmortem conversion of muscle to meat and increased the activity of citrate synthase in muscle. Metabolomics analysis by liquid chromatographic tandem mass spectrometric showed that ELE enhanced muscle energy level, regulated AMP-activated protein kinase (AMPK) signaling, modulated glycogenolysis/glycolysis, and altered the metabolism of carbohydrate, fatty acids, ketone bodies, amino acids, purine, and pyrimidine. Conclusion: Dietary ELE improved meat quality and alleviated the negative effect of pre-slaughter transport on meat quality by enhancing muscle oxidative metabolism capacity and inhibiting glycolysis in postmortem muscle, which is probably involved its regulation of AMPK.

한국인 수유부에 어유의 보충 급여 효과에 관한 연구 -III. 영아의 지방산 섭취, 혈장 지질 농도 및 혈장과 적혈구 인지질의 지방산 조성에 미친 영향- (Effects of Fish Oil Supplementation to Korean Lactating Women -III. The Effects of Fatty Acid Composition, Plasma Lipid Concentration and Fatty Acid Composition of Plasma Phopspholipids and Erythrocyte of Infants-)

  • 임현숙
    • Journal of Nutrition and Health
    • /
    • 제29권2호
    • /
    • pp.192-198
    • /
    • 1996
  • This experiment was conducted to examine the effects of fish oil supplementation with low does on the lipid concentration and fatty acid composition of plasma and the fatty acid composition of plasma phospholipid and erythrocyte of infants. Among 18 breast-fed infants, 6 were in control group and 12 were in fish oil groups. The subjects in fish oil groups were nursed by their mothers who supplemented with fish oil 1.96g/d or 3.92g/d, respectively for 2 weeks from 10 to 12 weeks postpartum. The nursing mothers consumed their usual diets at home. Blood samples were collected at the final day of experiment. There were no significant changes in daily intakes of total lipid, triglyceride, free fatty acid, phospholipid and cholesterol of infants by fish oil supplementation. However, the content of EPA (eicosapentaenoic acid)increased and that of ARA (arachidonic acid) decreaed significantly in plasma PC(phophatidylchline). And also, there were tendencies to increase triglyceride concentration and to decrease cholesterol and phopholipid concentrations of plasma. As the above results, atherogenic index (AI) showed a tendency to decrease, but not significant. DHA (docosahexaenoic acid) and EPA contents in plasma PC and PE (phosphatidylethanolamin) as well as those of erythrocyte tended to increase. In these results, we concluded that fish oil supplementation with low dose to lactating women does not obviously affect of the plasma lipid concentrations and fatty acid composition of plasma PC and PE as well as erythrocyte. However the increase of EPA content of plasma PC and the tendency to increase DHA and EPA contents of plasma as well as erythrocyte membrane indicate that there may be some beneficial effect on infant lipid metabolism of fish oil intake of nutsing mother were increased.

  • PDF

Eicosapentaenoic Acid, Docosahexaenoic Acid 농축어유와 들깨유가 저지방 식이를 섭취한 흰쥐의 지질대사에 미치는 영향 (The Effect of Dietary Concentrated Oils of Eicosapentaenoic Acid, Docosahexaenoic Acid and Perilla Oil on lipid Metabolism in Rata Fed Low Fat Diet)

  • 권순영;정영진
    • Journal of Nutrition and Health
    • /
    • 제34권6호
    • /
    • pp.626-636
    • /
    • 2001
  • To compare the effect of three kinds of n-3 fatty acids-eicosapentaenoic acid(EPA), docosahexaenoic acid(DHA) and perilla oil (PO)-on serum and liver lipid levels and fatty acid composition of liver phospholipid(PL) at low fat level(5%, w/w), 4-weeks old Sprague-Dawley rats were fed with one of five different oil diets for 4 weeks. Beef tallow(BT) and corn oil(CO) was used as control for sturated or n-6 fatty acid respectively. Se겨m concentrations of cholesterol(TC) and phospholipid(PL) were lower in PO DHA and EPA groups than in BT and CO groups. HDL-cholesterol levels were higher in CO and PO groups than in EPA, DHA and BT groups. Liver PL concentrations were higher in DHA and EPA groups than in CO, PO and BT groups, but liver TC and heal PL and TC concentrations did not show any significant difference among groups. Hepatic fatty acid composition of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), two major phospholipids in liver, reflected their dietary fatty acid composition. In PC and PE, total percentage own-6 series was higher in CO group than in any other groups, and that own-3 series was higher in DHA and PO groups than in EPA, CO and BT groups. Moreover, the ratio of 20 : 4/18 : 2 was lower in PO and DHA groups than in EPA, CO and BT groups. On the contrary, the percentage of C22 : 6 was lower in EPA, CO and BT groups than in PO and DHA groups. These results revealed that n-3 series(EPA, DHA and PO) were more effective in lowering um lipids than n-6 fatty acids or saturated fatty acid. Based on the results of fatty acid composition of hepatic phospholipid, we suggest that the dietary effect of PO and DHA on antiatherogenic characteristics seems to be similar extent. In addition, the effect of EPA might not be significantly different from that of BT or CO in the view of eicosanoids production from the precursor fatty acid. These difference of hepatic fatty acid composition might come from other characteristics of dietary oil as well as the type of unsaturation, not from the carbon chain length or the degree of unsaturation of n-3 fatty acid.

  • PDF

식물 대사공학에 의한 산업용 지방산 생산연구 현황 (Metabolic engineering for production of industrial oils in transgenic plants)

  • 이경렬;김현욱
    • Journal of Plant Biotechnology
    • /
    • 제36권2호
    • /
    • pp.97-105
    • /
    • 2009
  • Seed storage lipids of plants, essential for seed germination as energy supplier, have been used for humankind and animal as nutrition sources. Fatty acids of vegetable oils have the characters appropriate for industry based on their chain length, the position and the number of double bonds. So they are used as raw materials for lubricants, cosmetics, soaps, paints and plastics or as energy source such as bio-diesel. However, there is a limit that applies vegetable oils from typical oil crops for industrial uses, mainly because of the mixture of five common fatty acids. Therefore, identification of unusual fatty acids for industrial uses from diverse plant resources and metabolic engineering to produce unusual fatty acids have been carried out in Arabidopsis as a model for the study of oilseed biology. Here, we discuss the unusual fatty acids for industrial uses, the genes synthesizing them in lipid metabolism, and the current limits in production of transgenic plants accumulating unusual fatty acid in their seeds. In addition, we describe our work on metabolic engineering of Brassica napus for the production of the unusual fatty acid ricinoleic acid in the seed, because of its industrial uses.