• 제목/요약/키워드: Fatty Acid Synthase

Search Result 240, Processing Time 0.027 seconds

Porcine Fatty Acid Synthase Gene Polymorphisms Are Associated with Meat Quality and Fatty Acid Composition

  • Kim, Sang-Wook;Choi, Yang-Il;Choi, Jung-Suck;Kim, Jong-Joo;Choi, Bong-Hwan;Kim, Tae-Hun;Kim, Kwan-Suk
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.356-365
    • /
    • 2011
  • We assessed the effects of single-nucleotide polymorphisms (SNPs) within the porcine fatty acid synthase (FASN) gene regarding meat quality and fatty acid composition in two pig populations: Korean native pigs (KNP) were crossed with Yorkshire (YS) $F_2$, and KNP were crossed with Landrace (LR) $F_2$. Direct DNA sequencing using eight KNP and eight YS pigs revealed two SNPs: c.265C>T (silent) in exon 4 and c.6545A>C (Asn${\rightarrow}$His) in exon 39. The frequency of the two SNPs was analyzed using the polymerase chain reaction-restriction fragment length polymorphism method in seven pig breeds and their association with meat quality traits and fatty acid composition was studied. In the $KNP{\times}YSF_2$ population, both SNPs were significantly associated with the level of monounsaturated fatty acids, including palmitoleic (C16:1) and oleic acid (C18:1) (p<0.005). c.6545A>C was associated with intramuscular fat content in both populations. Our results indicate that variations in c.265C>T and c.6545A>C of the pig FASN can be used to select animals with better fatty acid composition and meat quality. Moreover, KNP was a useful breed for identifying genetic factors affecting meat quality and fatty acid composition and for producing high quality pork.

Evaluation of Three Candidate Genes Affecting Fatty Acid Composition in Pigs

  • Maharani, Dyah;Jung, Yeon-kuk;Jo, Cheorun;Jung, Woo-Young;Nam, Ki-Chang;Seo, Kang-Seok;Lee, Seung-Hwan;Lee, Jun-Heon
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.6-12
    • /
    • 2012
  • The association of three candidate genes, fatty acid synthase (FASN), microsomal triglyceride transfer protein (MTTP) and fatty acid binding protein 3 (FABP3), with fatty acid (FA) composition in Duroc pigs was investigated. Identified single nucleotide polymorphisms (SNPs) were used for polymerase chain reaction-restriction fragment length polymorphism genotyping. The c.265C>T SNP of FASN gene was significantly associated with high levels of palmitoleic acid (C16:1) (p<0.05), oleic acid (C18:1) (p<0.01), and mono-unsaturated fatty acid (MUFA) (p<0.01), but low levels of linoleic acid (C18:2) (p<0.01), alpha linolenic acid (C18:3) (p<0.05), and poly-unsaturated fatty acid (PUFA) (p<0.01) in animals having the CT genotype. The c.2573T>C SNP in the MTTP gene had a significant effect only in elevating the level of palmitoleic acid (C16:1) (p<0.05) in heterozygote animals. The polymorphism in FABP3 showed no significant effects on any fatty acid composition traits. These results suggest that the identified SNPs in the FASN and MTTP genes can be useful markers for selecting Duroc pigs having desirable healthy fatty acid composition.

Nutritional and Hormonal Regulation of Fatty Acid Synthase Gene Expression

  • Shin, Dong-Hoon;Kim, Byung-Yong;Hahm, Young-Tae;Kim, Eunki;Cho, Won-Dai
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.246-249
    • /
    • 1997
  • The maximum 30-fold level of fatty acid synthase (FAS) mRNA was achieved by 6hr after intraperitoneal injection of insulin. The kinetics and maximum effect of insulin were most evident on he 7.2 kb mRNA. In six hors after insulin administration there was about 100-fold increase in stead-state mRNA level. We observed a sharp decrease in 7.2kb mRNA by 8hr after insulin administation while there was no change in FAS mRNA content between the 6hr and 8hr-sampling periods. In contrast, a maximum induction of 4-fold was shown in the level of 5.1kb mRNA after insulin injection in streptozotocin-diabetic mice.

  • PDF

A potential role for fatty acid biosynthesis genes during molting and cuticle formation in Caenorhabditis elegans

  • Li, Yingxiu;Paik, Young-Ki
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.285-290
    • /
    • 2011
  • Caenorhabditis elegans undergoes a developmental molting process that involves a coordinated interplay among diverse intracellular pathways. Here, we investigated the functions of two fatty acid biosynthesis genes; pod-2, encoding acetyl-CoA carboxylase, and fasn-1, encoding fatty acid synthase, in the C. elegans molting process. Although both the pod-2 and fasn-1 genes were expressed at constant levels throughout C. elegans development, knockdown of the proteins encoded by these genes using RNA interference produced severe defects in triglyceride production, molting, and reproduction that were coupled to suppression of NAS-37, a metalloprotease. An assessment of the structure and integrity of the cuticle using a COL-19::GFP marker and Hoechst 33258 staining showed that downregulation of either pod-2 or fasn-1 impaired cuticle formation and disrupted the integrity of the cuticle and the hypodermal membrane.

Why is $\beta$-ketoacyl-ACP synthase II (FabF) is toxic in E. coli fatty acid biosynthesis\ulcorner

  • Lee, Hee-Jung;Cho, Kyoung-Hea;Choi, Keum-Hwa
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.217.2-217.2
    • /
    • 2003
  • In the type II system. there are two elongation enzymes in E. coli, FabB is well-known to its ability to elongate cis-3-decenoly-ACP (C10:1) in unsaturated fatty acid synthesis, whereas FabF is important for the thermal regulation of fatty acid composition by its ability to elongate palmitoleic acid to vaccenic acid. based on their genetic mutation anaylsis. Radiochemical enzyme assay was performed using myristoyl-ACP as a substrate, which is known for general substrate of FabB and FabF. (omitted)

  • PDF

Fatty acid uptake and oxidation in skeletal muscle

  • Yun, Hea-Yeon;Tamura, Tomohiro;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Long chain fatty acids (LCFAs) are transported into cells via plasma transporters, are activated to fatty acyl-CoA by fatty acyl-CoA synthase (ACS), and enter mitochondria via the carnitine system (CPT1/CACT/CPT2). The mitochondrial carnitine system plays an obligatory role in β-oxidation of LCFAs by catalyzing their transport into the mitochondrial matrix. Fatty acyl-CoAs are oxidized via the β-oxidation pathway, which results in the production of acetyl-CoA. The acetyl-CoA can be imported into the tricarboxylic acid (TCA) cycle for oxidation in the mitochondrial matrix or can be used for malonyl-CoA synthesis by acetyl-CoA carboxylase 2 (ACC2) in the cytoplasm. In skeletal muscle, ACC2 catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA, which is a potent endogenous inhibitor of carnitine palmitoyltransferase 1 (CPT1). Thus, ACC2 indirectly inhibits the influx of fatty acids into the mitochondria. Fatty acid metabolism can also be regulated by malonyl-CoA-mediated inhibition of CPT1.

Association between Single Nucleotide Polymorphisms of Fatty Acid Synthase and Fat Deposition in the Liver of the Overfed Goose

  • Wu, Wei;Guo, Xuan;Zhang, Lei;Hu, Dan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1244-1249
    • /
    • 2014
  • Goose fatty liver is one of the most delicious and popular foods in the world, but there is no reliable genetic marker for the early selection and breeding of geese with good liver-producing potential. In our study, one hundred and twenty-four 78-day-old Landes geese bred in Shunda Landes goose breeding farm, Jiutai, Jilin, China were selected randomly. The fatty livers were sampled each week after overfeeding during a three week period. Polymerase chain reaction-single strand conformation polymorphism and DNA sequencing were used to identify single nucleotide polymorphisms (SNPs) of fatty acid synthase (FAS), which is an important enzyme involved in the synthesis of fat under both physiological and pathological conditions. Least-squares correlation was established between these SNPs and fatty liver weight, abdominal fat weight, and intestinal fat weight of the overfed Landes geese, respectively. The results showed that fatty liver weight of geese with EF and FF genotypes (amplified by primer P1) was significantly higher than that of the EE genotype (p<0.05), and liver weight of CD and DD genotypes (amplified by primer P2) was significantly higher than that of the CC genotype (p<0.05). Different genotype combinations showed different liver weights, and from highest to lowest were ABDD, DDEF, DDFF, DDEE, ABEF, ABFF, AADD, and CDEF. Further analysis of DNA sequencing showed that there were two SNPs within the 5' promoter region the FAS gene. The geese of EF and FF genotypes carried a change of T to C, and the geese of CD and DD genotypes carried a change of A to G. The changes of the bases could potentially influence the binding of some transcription factors to this region as to regulate FAS gene. To our knowledge, this is the first report of SNPs found within the 5' promoter region of the Landes goose FAS gene, and our data will provide an insight for early selection of geese for liver production.

Suppression of Fatty Acid Synthase by Dietary Polyunsaturated Fatty Acids is Mediated by Fat itself, not by Peroxidative Mechanism

  • Kim, Hye-Kyeong;Choi, Sung-Won;Lee, Hae-Jeung;Lee, Joo-Hee;Choi, Hay-Mie
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.258-264
    • /
    • 2003
  • This study examined the effect of dietary polyunsaturated fatty acids (PUFA) that were supplemented with vitamin E on lipid peroxidation, glutathione-dependent detoxifying enzyme system activity, and lipogenic fatty acid synthase (FAS) expression in rat liver. Male Sprague-Dawley rats were fed semipurified diets containing either 1% (w/w) corn oil or 10% each of beef tallow, corn oil, perilla oil, and fish oil for 4 wk. Alpha-tocopherol was supplemented in perilla oil (0.015%) and fish oil (0.019%). Hepatic thiobarbituric acid reactive substances, an estimate of lipid peroxidation, were not significantly different among the dietary groups. The glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities were all elevated by the polyunsaturated fats, especially fish oil. The activity of FAS was reduced in the polyunsaturated fat-fed groups in the order of fish oil, perilla oil, and corn oil. The mRNA contents decreased in rats that were fed the 10% fat diets, particularly polyunsaturated fats, compared with the rats that were fed the 1% corn oil diet. Similarly, the inhibitory effect was the greatest in fish oil. These results suggest that lipid peroxidation can be minimized by vitamin E; PUFA in itself has a suppressive effect on lipogenic enzyme.

Inhibitory Effects of Onion (Allium cepa L.) Extract on Proliferation of Cancer Cells and Adipocytes via Inhibiting Fatty Acid Synthase

  • Wang, Yi;Tian, Wei-Xi;Ma, Xiao-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5573-5579
    • /
    • 2012
  • Onions (Allium cepa L.) are widely used in the food industry for its nutritional and aromatic properties. Our studies showed that ethyl acetate extract of onion (EEO) had potent inhibitory effects on animal fatty acid synthase (FAS), and could induce apoptosis in FAS over-expressing human breast cancer MDA-MB-231 cells. Furthermore, this apoptosis was accompanied by reduction of intracellular FAS activity and could be rescued by 25 mM or 50 mM exogenous palmitic acids, the final product of FAS catalyzed synthesis. These results suggest that the apoptosis induced by EEO occurs via inhibition of FAS. We also found that EEO could suppress lipid accumulation during the differentiation of 3T3-L1 adipocytes, which was also related to its inhibition of intracellular FAS activity. Since obesity is closely related to breast cancer and obese patients are at elevated risk of developing various cancers, these findings suggested that onion might be useful for preventing obesity-related malignancy.

Resveratrol Downregulates Acetyl-CoA Carboxylase $\alpha$ and Fatty Acid Synthase by AMPK-mediated Downregulation of mTOR in Breast Cancer Cells

  • Park, Sahng-Wook;Yoon, Sa-Rah;Moon, Jong-Seok;Park, Byeong-Woo;Kim, Kyung-Sup
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1047-1051
    • /
    • 2008
  • Overexpression of HER2 in breast cancer cells is considered to induce the expression of acetyl-CoA carboxylase $\alpha$ (ACACA) and fatty acid synthase (FASN) through activation of mammalian target of rapamycin (mTOR) signaling pathway. Resveratrol, a red wine polyphenol, has been shown to induce apoptosis in several cancers by interfering in several signaling pathways. Present study elucidated the mechanism by which resveratrol downregulates ACACA and FASN in breast cancer cells. Resveratrol activated AMP-activated protein kinase (AMPK) and downregulated mTOR in BT-474 cells. These effects of resveratrol were mimicked by AICAR, an AMPK activator, and exogenously expressed constitutively active AMPK, while they were abolished by a dominant-negative mutant of AMPK. The downregulation of mTOR was not accompanied with changes in Akt, the upstream regulator of mTOR. These findings indicate that the downregulation of ACACA and FASN by resveratrol is mediated by the downregulation of mTOR signaling pathway via activation of AMPK.