• Title/Summary/Keyword: Fatigue strength analysis

Search Result 648, Processing Time 0.026 seconds

Optimal Design of Lightweight Frame for Heavy Flat-Bed Trailer by Using Taguchi Method (다구찌기법을 이용한 대형 평판트레일러 하부프레임 경량설계)

  • Kim, Jin-Gon;Yoon, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • For achieving economical fuel consumption, an increase in the load bearing capacity, and for environmental conservation, there is a constant demand for lightweight frames of commercial vehicles used in the transportation industry. In this study, a structural analysis of the frame of a heavy flat-bed trailer was performed to determine the optimal design of a new lightweight frame made of high-strength steel. To identify the key design parameters of the trailer frame, Taguchi's orthogonal array was used in the experiments. Using ANSYS, a commercial FEA program, the frame structure was optimized with respect to stress, deflection, and torsional stiffness by performing stress and vibration analyses. A physical model of the trailer was also built to verify the validity of the numerical analyses. Finally, an on-road fatigue test of the new lightweight frame made of the high-strength steel, ATOS80, was performed to confirm the durability of the new design.

Study on Hot Spot Stress Calculation for Welded Joints using 3D Solid Finite Elements (3차원 솔리드 요소를 이용한 용접부 핫스팟 응력 계산에 대한 연구)

  • Oh, Jung-Sik;Kim, Yooil;Jeon, Seok-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • Because of the high stress concentration near the toe of a welded joint, the calculation of local stress using the finite element method which is relevant to the fatigue strength of the weld toe crack, is a challenging task. This is mainly caused by the sensitivity of finite element analysis, which usually occurs near the area of a dramatically changing stress field. This paper presents a novel numerical method through which a less mesh-sensitive local stress calculation can be achieved based on the 3D solid finite element, strictly sticking to the original definition of hot spot stress. In order to achieve the goal, a traction stress, defined at 0.5t and 1.5t away from the weld toe, was calculated using either a force-equivalent or work-equivalent approach, both of which are based on the internal nodal forces on the imaginary cut planes. In the force-equivalent approach, the traction stress on the imaginary cut plane was calculated using the simple force and moment equilibrium, whereas the equivalence of the work done by both the nodal forces and linearized traction stress was employed in the work-equivalent approach. In order to confirm the validity of the proposed method, five typical welded joints widely used in ships and offshore structures were analyzed using five different solid element types and four different mesh sizes. Finally, the performance of the proposed method was compared with that of the traditionally used surface stress extrapolation method. It turned out that the sensitivity of the hot spot stress for the analyzed typical welded joints obtained from the proposed method outperformed the traditional extrapolation method by far.

A Study on the Development of New SRC Lining Board (신형 SRC 복공판의 개발에 관한 연구)

  • Kown Beom-Jun;Park Do-Uk;Kim Yong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.172-180
    • /
    • 2005
  • The purpose of this study is to suggest a new SRC(Steel Ready mixed Concrete) lining board. The research method of this study includes problem analysis of existing lining boards a constant load test and a fatigue test. The results of this study are as follow : 1) the suggested new lining board improves the function and reduce slipperiness than existing lining boards. 2) the strength of the new SRC lining board is analyzed as superior than existing lining boards from the results of constant load test and fatigue test.

Improvement of Flight Safety by Horizontal Stabilizer Design Improvement of Rotorcraft (회전익 항공기 수평 안정판의 설계 개선을 통한 비행 안전성 향상)

  • Lee, Yoon-Woo;Kim, Dae-Han;Jang, Min-Wook;Hyun, Young-Jin;Lee, Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.134-141
    • /
    • 2019
  • This paper is a study on design improvement of rotorcraft horizontal stabilizer. The rotorcraft horizontal stabilizer stabilizes the behavior of the pitch, yaw, etc. from the aircraft. Because of this role, horizontal stabilizers are a major component (Flight Safety Part) that affects flight safety on rotorcraft. However, when the rotorcraft was operated in domestic, cracks were found in the inner structure of the horizontal stabilizer and design improvement was needed. In this paper, we identified the two causes of the horizontal stabilizer crack defects through fracture analysis and structural analysis. The first is the tightening torque when the bolt is tightened, and the second is the lead-lag behavior of aircraft. In order to improve these two causes, bolt fastening method, flange structure and thickness were changed and composite ring was applied. In order to verify the design improvement, the structural analysis was performed and the structural strength was improved. Also Fatigue analysis of the internal structure (Rib 1) was performed and it was confirmed that the requirements were satisfied.

A Study on the Cause and Improvement of Crack in the Installing Structure of the Bulkhead of Aircraft (항공기 Bulkhead 체결구조의 균열 원인 및 개선에 관한 연구)

  • Choi, Hyoung Jun;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.448-454
    • /
    • 2020
  • This study aims to determine the cause of structural defects occurring during aircraft operations and to verify the structural integrity of the improved features. The fracture plane was analyzed to verify the characteristics of the cracks and the fatigue failure leading to the final fracture was determined by the progress of the cracks by the repeated load. During aircraft operations, the comparative analysis of the load measurement data at the cracks with the aircraft design load determined that the measured load was not at the level of 30% of the design to be capable of being damaged. A gap analysis resulted in a significant stress of approximately 32 ksi at the crack site. Pre-Load testing also confirmed that the M.S. was reduced by more than 50% from +0.71 to +0.43, resulting in a sharp increase in aircraft load and the possibility of cracking when combined. Thus, structural reinforcement and the removal of the gap for aircraft cracking sites improved the defect. Based on the structural strength analysis of the improvement features, the bulkhead has a margin of about +0.88 and the fitting feature is about +0.48 versus allowable stress. In addition, the life analysis results revealed an improvement of approximately 84000 hours.

Study on the Defect Improvement of Fuel Flow Proportioner Install Structure on Aircraft (항공기 연료흐름분배기 장착 구조물 결함개선 연구)

  • Choi, Hyoung Jun;Lee, Jin Won;Choi, Jae Ho;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.558-567
    • /
    • 2020
  • This study examined the defect characteristics of fuel flow proportioner-mounted structures to analyze the causes of structural defects during aircraft operation. System vibrations and single component vibrations that occur during aircraft operations are usually the cause of structural defects. The fuel flow proportioner causes a defect in the support structure due to the vibration caused by the pressure change caused by the sudden increase in the flow rate. Defects in the support structure of the fuel flow proportioner are not correlated directly with the cracking of the maneuver, and flight time according to aircraft operation analysis is related to the use of A/B. The structural reinforcement configuration was confirmed through static and life analysis of the cracks of the bracket mounted under the fuel flow proportioner for improvement of the defect. An analysis of the reinforcement revealed a minimum structural strength of +0.15. Structural life analysis confirmed that the stress acted on the site under 15Ksi. The fatigue life was confirmed to be more than 7,700 Cycles.

An Experimental Study on the Biomechanical Effectiveness of Bone Cement-Augmented Pedicle Screw Fixation with Various Types of Fenestrations

  • Yoon, Sang Hoon;Lee, Sang Hyung;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.779-789
    • /
    • 2022
  • Objective : To analyze the effects of the number and shape of fenestrations on the mechanical strength of pedicle screws and the effects of bone cement augmentation (BCA) on the pull-out strength (POS) of screws used in conventional BCA. Methods : For the control group, a conventional screw was defined as C1, a screw with cannulated end-holes was defined as C2, a C2 screw with six pinholes was defined as C3, and the control group type was set. Among the experimental screws, T1 was designed using symmetrically placed thru-hole type fenestrations with an elliptical shape, while T2 was designed with half-moon (HM)-shaped asymmetrical fenestrations. T3 and T4 were designed with single HM-shaped fenestrations covering three pitches and five pitches, respectively. T5 and T6 were designed with 0.6-mm and 1-mm wider fenestrations than T3. BCA was performed by injecting 3 mL of commercial bone cement in the screw, and mechanical strength and POS tests were performed according to ASTM F1717 and ASTM F543 standards. Synthetic bone (model #1522-505) made of polyurethane foam was used as a model of osteoporotic bone, and radiographic examinations were performed using computed tomography and fluoroscopy. Results : In the fatigue test, at 75% ultimate load, fractures occurred 7781 and 9189 times; at 50%, they occurred 36122 and 82067 times; and at 25%, no fractures occurred. The mean ultimate load for each screw type was 219.1±52.39 N for T1, 234.74±15.9 N for T2, 220.70±59.23 N for T3, 216.45±32.4 N for T4, 181.55±54.78 N for T5, and 216.47±29.25 N for T6. In comparison with C1, T1, T2, T3, T4, and T6 showed significantly different ultimate load values (p<0.05). However, when the values for C2 and the fenestrated screws were evaluated with an unpaired t test, the ultimate load value of C2 significantly differed only from that of T2 (p=0.025). The ultimate load value of C3 differed significantly from those of T1 and T2 (C3 vs. T1 : p=0.048; C3 vs. T2 : p<0.001). Linear correlation analysis revealed a significant correlation between the fenestration area and the volume of bone cement (Pearson's correlation coefficient r=0.288, p=0.036). The bone cement volume and ultimate load significantly correlated with each other in linear correlation analysis (r=0.403, p=0.003). Conclusion : Fenestration yielded a superior ultimate load in comparison with standard BCA using a conventional screw. In T2 screws with asymmetrical two-way fenestrations showed the maximal increase in ultimate load. The fenestrated screws can be expected to show a stable position for the formation of the cement mass.

Performance Improvement of Triangular-type V-belt Clutch (삼각벨트 클러치의 성능 향상에 관한 연구)

  • 신범수;김상헌;박희찬
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 1999
  • This study was conducted to provide a direction for improving the performance of triangular-type belt clutch. The power transmission characteristics and the wear of belt were investigated for two types of pulley set theoretically and experimentally. The results of research were summarized as follows: 1) Based on the theoretical analysis for the life time of belt, the wear of belt could be reduced by increasing the sizes of driving V-pulley and tension pulley, and by decreasing the tension on V-belt. 2) The pulley set # 2 could transmit more power than the pulley set # 1 could at the same slop rate. While the slip rate was 2.36% on the pulley set # 2 at the maximum power transmission, the slip rate on the pulley set # 1 was increased up to 12.2% at the same condition. 3) From the 16 hours' fatigue test, the wear of belt used n the pulley set # 1 was observed severer than that in the pulley set#2. Also, it was found that the tensile strength of belt used in the pulley set # 2 was greater than that of belt used in the pulley set # 1.

  • PDF

Forging Process Design to Improve the Properties of Al Alloy Forged Part for Aerospace (항공기용 Al 합금 단조품의 특성 향상을 위한 단조 공정 설계)

  • Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.228-232
    • /
    • 2001
  • Fatigue strength, electrical conductivity and stress-corrosion-cracking resistance are considered as important factors at aircraft Al alloys, therefore Al7050 alloy has been developed to improve such properties. However, hammer-forged Al7050 parts showed the undesirable structures such as severe local grain coarsening and inhomogeneous material flow, resulted in the degraded mechanical properties. In this paper, process conditions are investigated for elimination of the grain coarsening and improved material flow during forging process by both of experiments and FEM analysis. Particular interest has been given to understand role of preform shape on the grain coarsening behavior and magnitude of the hammer forging load The use of preform has been beneficial for reduction of the forging load and elimination of the grain coarsening. However, in the cases of as received bar and the round bar, which was machined to 2.5mm thickness in surface layer, some degree of local grain coarsening behavior has been observed. The optimized preform shape could be properly designed by applying the FEM simulation.

  • PDF

A study on the shape optimization of ship's bellows (선박용 벨로우즈의 형상최적화에 관한 연구)

  • Kim J.P.;Kim H.S.;Kim H.J.;Cho W.S.;Jeh S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1303-1306
    • /
    • 2005
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is favorable that the fatigue life is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type bellows using the finite element method. The effective factors, mountain height, length, thickness, and number of mountains and the length of joint are considered and the proper values are chosen for the simulation. The results shows that if the number of mountains are reduced, the volume decreases while the stress increases. However, the number of mountains are increased, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the volume and stress are decreasing at a certain lower value region.

  • PDF