• Title/Summary/Keyword: Fatigue load

Search Result 1,495, Processing Time 0.032 seconds

Identification of moving train loads on railway bridge based on strain monitoring

  • Wang, Hao;Zhu, Qingxin;Li, Jian;Mao, Jianxiao;Hu, Suoting;Zhao, Xinxin
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.263-278
    • /
    • 2019
  • Moving train load parameters, including train speed, axle spacing, gross train weight and axle weights, are identified based on strain-monitoring data. In this paper, according to influence line theory, the classic moving force identification method is enhanced to handle time-varying velocity of the train. First, the moments that the axles move through a set of fixed points are identified from a series of pulses extracted from the second derivative of the structural strain response. Subsequently, the train speed and axle spacing are identified. In addition, based on the fact that the integral area of the structural strain response is a constant under a unit force at a unit speed, the gross train weight can be obtained from the integral area of the measured strain response. Meanwhile, the corrected second derivative peak values, in which the effect of time-varying velocity is eliminated, are selected to distribute the gross train weight. Hence the axle weights could be identified. Afterwards, numerical simulations are employed to verify the proposed method and investigate the effect of the sampling frequency on the identification accuracy. Eventually, the method is verified using the real-time strain data of a continuous steel truss railway bridge. Results show that train speed, axle spacing and gross train weight can be accurately identified in the time domain. However, only the approximate values of the axle weights could be obtained with the updated method. The identified results can provide reliable reference for determining fatigue deterioration and predicting the remaining service life of railway bridges.

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle (고속철도차량 관절대차 갱웨이 링의 내구성 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2019
  • To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.

Influencing Factors and Consequences of Near Miss Experience in Nurses' Medication Error (간호사의 투약 근접오류경험의 영향 요인과 결과)

  • Park, Jin Hee;Lee, Eun Nam
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.5
    • /
    • pp.631-642
    • /
    • 2019
  • Purpose: This study aimed to predict the influencing factors and the consequences of near miss in nurses' medication error based upon Salazar & Primomo's ecological system theory. Methods: A convenience sample of 198 nurses was recruited for the cross-sectional survey design. Data were collected from July to September 2016. Using the collected data, the developed model was verified by structural equation modeling analysis using SPSS and AMOS program. Results: For the fitness of the hypothetical model, the results showed that $x^2$ ($x^2=258.50$, p<.001) was not fit, but standardized $x^2$ ($x^2/df=2.35$) was a good fit for this model. Additionally, absolute fit index RMR=.06, RMSEA=.08, GFI=.86, AGFI=.81 reached the recommended level, but the Incremental fit index TLI=.82, CFI=.85 was not enough to reach to the recommended level. With the path diagram of the hypothetical model, caution (${\beta}=-.29$ p<.001), patient safety culture (${\beta}=-.20$, p=.041), and work load (${\beta}=.18$, p=.037) had a significant effect on the near miss experiences in nurses' medication error, while fatigue (${\beta}=-.06$, p=.575) did not affect it. Moreover, the near miss experience had a significant effect on work productivity (${\beta}=-.25$, p=.001). Conclusion: These results have shown that to decrease the near miss experience by nurses and increase their work productivity in hospital environments would require both personal and organizational effort.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II

  • Kim, Junbae;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.213-225
    • /
    • 2020
  • Floating Offshore Wind Turbines (FOWT) installed in the deep sea regions where stable and strong wind flows are abundant would have significantly improved energy production capacity. When designing FOWT, it is essential to understand the stability and motion performance of the floater. Water tank model tests are required to evaluate these aspects of performance. This paper describes a model test and numerical simulation for a 750-kW semi-submersible platform wind turbine model-II. In the previous model test, the 750-kW FOWT model-I suffered slamming phenomena from extreme wave conditions. Because of that, the platform freeboard of model-II was increased to mitigate the slamming load on the platform deck structure in extreme conditions. Also, the model-I pitch Response Amplitude Operators (RAO) of simulation had strong responses to the natural frequency region. Thus, the hub height of model-II was decreased to reduce the pitch resonance responses from the low-frequency response of the system. Like the model-I, 750-kW FOWT model-II was built with a 1/40 scale ratio. Furthermore, the experiments to evaluate the performance characteristics of the model-II wind turbine were executed at the same location and in the same environment conditions as were those of model-I. These tests included a free decay test, and tests of regular and irregular wave conditions. Both the experimental and simulation conditions considered the blade rotating effect due to the wind. The results of the model tests were compared with the numerical simulations of the FOWT using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code from the National Renewable Energy Laboratory (NREL).

The Study on Analysis of Muscle Activity during Sling Squat Exercise according to Rope Type (로프 타입에 따른 슬링을 이용한 스쿼트 운동 시 근육의 활성화 비교 분석)

  • Woo, Hyun Ji;Kwon, Tae Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.4
    • /
    • pp.311-319
    • /
    • 2020
  • Objective: The purpose of this study was to examine of this study is to study the effect of squat exercise on muscle activation in a sling device using various types of ropes and to propose an effective sling exercise method for strengthening the lower extremity strength. Method: 20 adult male subjects (age: 25.2±2.4 yrs, height: 176.5±3.2 cm, weight: 77.2±4.5 kg) participated in this study. In the experiment, a total of four squats were conducted: squat [SE], sling squat using inelastic rope [IR], sling squat using elastic rope [ER], and sling squat using two elastic ropes [TER]. Squats were performed 5 times for each condition, and a 60-second break was given for each condition to minimize muscle fatigue. The activation of biceps brachii, rectus femoris, gastrocnemius, and tibialis anterior muscles was measured. Results: It was found that the activation of all muscles was the lowest during the squat exercise [SE]. During the sling squat using inelastic rope [IR], the muscle activation of the biceps brachii was the highest. During the sling squat using elastic rope [ER], the activation of the rectus femoris, gastrocnemius, and tibialis anterior muscles was found to be the highest. In the sling squat using two elastic ropes [TER], most of the muscle activation was similar to that of the sling squat using inelastic rope [IR]. Conclusion: Our results of the experiment, it was found that sling squat exercise using elastic rope had a positive effect on the activation of all muscles. It is thought that performing a squat exercise under moderate weight load and unstable conditions, such as sling squat exercise using elastic rope, can increase the muscle activity of the lower limbs and perform more effective exercise effect than performing a conventional squat exercise under stable conditions. In the future, if research is conducted not only on adult men, but also on various ages and patients, it will be able to provide positive help in improving balance, stability and stamina through squat exercise.

Assessment of the Risks of Occupational Diseases of the Passenger Bus Drivers

  • Golinko, Vasyl;Cheberyachko, Serhiy;Deryugin, Oleg;Tretyak, Olena;Dusmatova, Olga
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.543-549
    • /
    • 2020
  • Background: The working conditions of bus drivers are difficult; they lead to occupational diseases and require careful study, particularly in Ukraine. The objective of the article is the description of occupational health risks of passenger bus drivers that lead to deteriorating health. Methods: The risk assessment was performed using a modified Risk Score method, which allowed determining the generalized level of danger to the driver's health. The hygienic hazards level was assessed as based on Stevenson's law, which was generalized later. Results: Based on the modification of the Risk Score method, it was possible to depart from expert assessments method of the risk level and calculate the general indicator based on the degree of dependence of the impact on the human body on its intensity, proposed by V. Minko. This allows objective determining of the impact of hygiene hazards on the health of the driver and to predict the occurrence of occupational diseases associated with the cardiovascular system, musculoskeletal system, and partial or complete disability due to the accumulation of emotional fatigue. The hazard assessment was carried out for three brands of passenger buses common in Ukraine, in which the driver is exposed to the dangers of fever, vibration, noise, harmful impurities in the bus cabin, and emotional load. Conclusion: The health of drivers in the cabins of passenger buses is most affected by hygiene hazards: fever, vibration, and emotional stress. The generalized level of risk is calculated by the modified method of Risk Score is 0.83; -0.99, -0.92 respectively.

A Study on the Application of Carbon Fiber Reinforced Plastics to PTO Shafts for Aircrafts (탄소섬유 강화 복합재료의 항공기용 PTO 샤프트 적용에 관한 연구)

  • Jeong, Kwang Il;Kim, Wonki;Jeong, Jae-Moon;Oh, Jaehyung;Bang, Yun Hyuk;Kim, Seong Su
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.380-386
    • /
    • 2021
  • This paper aims to improve the critical speed of power-take-off (PTO) shafts by using carbon fiber reinforced plastics (CFRPs). The PTO shaft was designed with titanium-CFRPs hybrid structure in order to compensate the low shear strength of CFRPs. Based on the requirements for PTO shafts, the dimensions of PTO shafts were determined through a parametric study. To evaluate the performance of the PTO shaft, a vibration test, a static torsion test, and a torsion durability test were performed. In the vibration test, the critical speed of PTO shafts was 20570 rpm, which was 7.5% higher than that of titanium shafts. Additionally, it was confirmed that the maximum allowable torque of the PTO shaft was 2300 N·m. Finally, under repeated load in the range of 11.3 to 113 N·m, the fatigue failure in the PTO shaft did not occur up to 106 cycles.

Development of ViscoElastoPlastic Continuum Damage (VEPCD) Model for Response Prediction of HMAs under Tensile Loading (인장하중을 받는 아스팔트 혼합물의 점탄소성 모형의 개발)

  • Underwood, B. Shane;Kim, Y. Richard;Seo, Youngguk;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.45-55
    • /
    • 2008
  • The objective of this research was to develop a VEPCD (ViscoElastoPlastic Continuum Damage) Model which is used to predict the behavior of asphalt concrete under various loading and temperature conditions. This paper presents the VEPCD model formulated in a tension mode and its validation using four hot mix asphalt (HMA) mixtures: dense-graded HMA, SBS, CR-TB, and Terpolymer. Modelling approaches consist of two components: the ViscoElastic Continuum Damage (VECD) mechanics and the ViscoPlastic (VP) theory. The VECD model was to describe the time-dependent behavior of HMA with growing damage. The irrecoverable (whether time-dependent or independent) strain has been described by the VP model. Based on the strain decomposition principle, these two models are integrated to form the VEPCD model. For validating the VEPCD model, two types of laboratory tests were performed: 1) a constant crosshead strain rate tension test, 2) a fatigue test with randomly selected load levels and frequencies.

Wave Load on Fixed Offshore Gravity Platform (중력식(重力式) 고정해양구물(固定海洋構物)에 작용(作用)하는 파랑하중(波浪荷重)에 관한 연구(硏究))

  • Kim, Chul;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.87-95
    • /
    • 1988
  • In the arctic offshore regions, massive offshore gravity platforms are recommended to be construced because of severe environments. In such structures which is so large that its characteristic length is of the order of the wave length, wave-structure interaction problem has been solved using linear diffraction theory. Structural analysis of the large scale offshore structures requires wave force distribution along depth and wave pressure distribution on the body surface. In this study, existing computer program which calculates the total wave force acting on axisymmetric bodies has been modified to calculate wave force distribution along depth and wave pressure distribution on the body surface. Numerical results of pressure distribution for a fixed vertical cylinder obtained from this analysis has been compared with the results of an analytic solution of MacCamy-Fuchs, and good agreements has been obtained. It is desirable to use 6 in the case of analytic solution, and 5 in the case of numerical solution as the Fourier Mode of Green function. The results in this study are expected to be utilized for structural analysis such as pseudo-static analysis, dynamic analysis and fatigue analysis.

  • PDF

Design Improvements for Preventing Crack of Equipment Mounting Structure in Rotary Wing Aircraft (회전익 항공기의 장비 장착 지지 구조물의 균열 방지를 위한 설계 개선)

  • Bang, Daehan;Lee, Sook;Lee, Sanghoon;Choi, Sangmin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2020
  • This paper presents the design improvements made for the crack which is in the mounting structure of the mechanical structure of rotary wing aircraft. The doubler added to the mounting structure of rotary wing aircraft was designed and manufactured based on the load at the development stage, and a crack was found in the surface of doubler at a certain point during the operation of the aircraft. To identify the cause of the crack, the initial deformation of the structure, which may occur as a result of fastening condition, was considered and the dynamic analysis of the natural frequency of the structure comparing to the blade passing frequency of the aircraft were additionally reviewed. As a result of this study, a shim was added to remove the physical gap of the fastening area, and a doubler with thickened reinforcement was installed. The increase of structural strength is shown by reviewing the results of dynamic analysis for the structural verification of the improved design, and the fatigue evaluation complied to the requirement of the aircraft lifetime.