• Title/Summary/Keyword: Fatigue lift

Search Result 99, Processing Time 0.033 seconds

Evaluation of Fatigue Life Characteristic of a Fiber-Reinforced Composites under the Repeated Impact Loading (반복충격에 의한 섬유강화 복합재료의 피로수명 특성 평가)

  • Choi J.H.;Kim H.I.;Huh Y.;Seok C.S.;Chang P.S.;Lee C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1025-1028
    • /
    • 2005
  • Generally, fiber-reinforced composites have the highest possibilities of impact damages with external object collisions. Also, resulting in fatigue fracture considering the continued impact load. For the reasons mentioned above, the accurate understanding of interactions between the impact of composites and the fatigue load will be essential to understand the safety level of material structures. Furthermore, the composite materials and structures, due to the geometrical effect, vary the life in connection with the impact-fatigue. Therefore, I have reached the point that a focus of this study will be to evaluate fatigue fracture characteristics by the impacts-fatigue load of fiber-reinforced composites. Thus, in this paper, I have tried to work on impacts-fatigue load causing aspects and impact characteristics through impact-fatigue test on HTV-5Hl Black 9250 material made- structure, along with to evaluate the expected lift of real structures, the FEM analysis was carried out.

  • PDF

The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles (차량용 스프링강의 피로수명에 미치는 압축잔류응력의 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.281-287
    • /
    • 2002
  • Nowadays, many components used in machinery industry is required lightness and high strength. Therefore, the effects of compressive residual stress by shot-peening which is method to improve fatigue lift of spring steel (JISG SUP-9), which used in suspension of automobile, on fatigue crack growth characteristics was investigated with considering fracture mechanics. So, we can obtain followings 1. The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

  • PDF

The effect of pre-load and fatigue life for one-level pedicle screw system (단분절 척추경 나사못의 피로수명과 Pre-Load의 영향)

  • 김병일;이효재;송정일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1298-1301
    • /
    • 2003
  • The purpose of this research is to evaluate the effect of pre-load and fatigue life of the distracted one-level pedicle screw system. A spring, which acted as a substitute of the ligament, was installed in the one-level pedicle screw system before testing. The static and fatigue properties are now being tested, which includes 6mm rod to 6mm screw, 6mm rod to 6.5mm screw and 6.35mm rod to 6.5mm screw, under pre-load. Until now as test data were analyzed, 6mm rod to 6.5mm screw was found to have the best performances of stillness and fatigue lift, while 6mm rod to 6mm screw showed the shortest fatigue life. If the stiffness of screw was bigger than that of rod. the fatigue life was prolonged. The fatigue life of the distracted pedicle screw was proved to be shorter than that of the one-level pedicle screw system. So the fatigue life was shortened because of the effect of the spring on the flexibility and stiffness of the rod. In order to obtain the stability of the pedicle screw, more tests are under doing on this topic.

  • PDF

The Characteristics of Fatigue Cracks Emanating from Small Hole Defects Located Opposite Position of the Shaft Cross Section (축단면 내 대칭위치에 존재하는 원공결함에서 발생하는 피로균열 거동)

  • Song, Sam-Hong;An, Il-Hyeok;Lee, Jeong-Mu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.84-91
    • /
    • 2002
  • The shaft with the circular cross section have symmetric structural combination parts to keep the rotating balance. Hence the crack usually emanate from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using rotary bending tester and the specimen with symmetric defects in circular cross section. From the facts the characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section was examined. Also we observed the internal crack using oxidation coloring and investigated the fatigue behavior using the relationship between surface crack and internal crack. As a result of fatigue lift of symmetric cracks was reduced to 35% compared to single crack’s. We examined the characteristics of fatigue behavior in element with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range obtained from approximation method.

A Study on Dynamic Analysis and Fatigue Life of the Belt in the OHT Vehicle (OHT 차량 벨트 동특성 및 피로 수명에 관한 연구)

  • Jung Il-Ho;Kim Chang-Su;Cho Dong-Hyeob;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1085-1092
    • /
    • 2005
  • The OHT(Over Head Transportation) Vehicle transports heavy products quickly and repeatedly at the industrial workplace. The belt in the OHT vehicle is used to support the weight of the OHT Cage. The fatigue of the belt is caused by the dynamic load during the operation time. Since the fatigue fracture of the belt affects the safety at the workplace, the correct prediction of the dynamic load is necessary to calculate the fatigue life of the belt on the design step. In this paper a computer aided analysis method is proposed for the belt in the early design stage using dynamic analysis, stress analysis, belt tensile test, belt fatigue test and fatigue lift prediction method. From the dynamic load time histories and the stress of the belt FE model, a dynamic stress time history is produced. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The method developed in this paper is used to reduce the time and cost for designing the OHT belt in different environment and condition.

A Study on the FEM Analysis of Maraging Steel according to Nb content (Nb 함량에 따른 마르에이징강의 유한요소해석에 관한 연구)

  • Choi, Byung-Ky;Choi, Byung-Hui;Kwon, Tack-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.1-8
    • /
    • 2005
  • Effects of Nb(Niobium) contents and solution annealing on the strength and fatigue life of 18%Ni maraging steel commonly using in aircraft, space field, nuclear energy, and vehicle etc. were investigated. Also the fatigue life stress intensity factor were compared experiment result and FEA(finite element analysis) result. The more Nb content, the higher or the lower fatigue life on base metal specimens or solution annealed specimens showing that the fatigue lift was almost the same. The maximum stresses of X, Y, and Z axis direction showed about $2.12{\times}10^2MPa,\;4.40{\times}10^2MPa\;and\;1.32{\times}10^2MPa$ respectively. The Y direction stress showed the highest because of the same direction as the loading direction. The fatigue lives showed about 7% lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about $3.5{\sim}10%$ than that of the experiment result showing that the longer fatigue crack length the higher error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

Thermal Fatigue Characteristics of $\mu$ BGA Solder Joints with Underfill (언더필이 적용된 $\mu$p BGA 솔더 접합부의 열피로특성)

  • 고영욱;김종민;이준환;신영의
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.25-30
    • /
    • 2003
  • There have been many researches for small scale packages such as CSP, BGA, and Flipchip. Underfill encapsulant technology is one of the latest assembly technologies. The underfill encapsulant could enhance the reliability of the packages by flowing into the gap between die and substrate. In this paper, the effects of underfill packages by both aspects of thermal and mechanical reliabilities are studied. Especially, it is focused to value board-level reliability whether by the underfill is applied or not. First of all, The predicted thermal fatigue lifes of underfilled and no underfilled $\mu$ BGA solder joints are performed by Coffin-Manson's equation and FEA program, ANSYS(version 5.62). Also, the thermal fatigue lifes of $\mu$ BGA solder joints are experimented by thermal cycle test during the temperature, 218K to 423k. Consequently, both experimental and numerical study show that $\mu$ BGA with underfill has over ten times better fatigue lift than $\mu$ BGA without underfill.

Fatigue Life Evaluation of Spot Welding Including Loading Speed Effect (점용접부에서 하중속도효과를 고려한 피로수명평가)

  • ;;;;A. Shimamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2003
  • Evaluation of fatigue strength on the spot welded part is very important for strength design of spot welded steel structures. In this paper, we could get the life cycle of the spot welded part using the lethargy coefficient obtained through the quasi-static tensile shear test for the specimen welded by current 10kA. The reliability evaluation of the life cycle is completed by comparing the life cycle calculated under the constant loading rate with the life cycle obtained by dynamic fatigue test. And then the result calculated by the lethargy coefficient is verified through the lift cycle calculated using the dynamic final tensile stress formula under the increased loading speed. This way can make save the time and cost in processing of predicting the life cycle of a structure.

Life Assessment of Automotive Electronic Part using Virtual Qualification (Virtual Qualification을 통한 자동차용 전장부품의 수명 평가)

  • Lee, Hae-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.143-146
    • /
    • 2005
  • In modern automotive control modules, mechanical failures of surface mounted electronic components such as microprocessors, crystals, capacitors, transformers, inductors, and ball grid array packages, etc., are mai or roadblocks to design cycle time and product reliability. This paper presents a general methodology of failure analysis and fatigue prediction of these electronic components under automotive vibration environments. Mechanical performance of these packages is studied through finite element modeling approach fur given vibration environments in automotive application. Using the results of vibration simulation, fatigue lift is predicted based on cumulative damage analysis and material durability information. Detailed model of solder/lead joints is built to correlate the system level model and obtain solder strains/stresses. The primary focus in this paper is on surface-mount interconnect fatigue failures and the critical component selected for this analysis is 80 pin plastic leaded microprocessor.

  • PDF

Effect of Metal Removal and Traction Force on Contact Fatigue Life (견인력과 접촉표면 제거가 접촉피로수명에 미치는 영향)

  • Seo Jung-Won;Hur Hun-Mu;Choi Jae-Boong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1384-1391
    • /
    • 2005
  • Damage often occurs on the surface of railway wheels due to wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue lift by the metal removal of the contact surface were investigated by many researchers, but they have not considered initial residual stress and traction force. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. The traction force and residual stress are operated on wheels of locomotive and electric motor vehicle. In this study, the effect of metal removal depth on the contact fatigue life for a railway wheel has been evaluated by applying lolling contact fatigue test. The effect of the traction force and metal removal on the contact fatigue life has been estimated by finite element analysis. It has been found that the initial residual stress determines the amount of metal removal depth if the traction coefficient is less than 0.15. If the traction coefficient is greater than 0.2, however, the amount of metal removal depth is independent on the intial residual stress.