• Title/Summary/Keyword: Fatigue life evaluation

Search Result 447, Processing Time 0.031 seconds

Fatigue Life Evaluation of Spot Welding Including Loading Speed Effect (점용접부에서 하중속도효과를 고려한 피로수명평가)

  • ;;;;A. Shimamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2003
  • Evaluation of fatigue strength on the spot welded part is very important for strength design of spot welded steel structures. In this paper, we could get the life cycle of the spot welded part using the lethargy coefficient obtained through the quasi-static tensile shear test for the specimen welded by current 10kA. The reliability evaluation of the life cycle is completed by comparing the life cycle calculated under the constant loading rate with the life cycle obtained by dynamic fatigue test. And then the result calculated by the lethargy coefficient is verified through the lift cycle calculated using the dynamic final tensile stress formula under the increased loading speed. This way can make save the time and cost in processing of predicting the life cycle of a structure.

Quantitative Evaluation for the Internal Defect Size Governing the Fatigue Life in Ductile Irons (구상흑연주철의 피로수명을 지배하는 내재결함부 크기는 정량적 평가)

  • 김진학;김민건
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2742-2748
    • /
    • 2000
  • In this study, the quantitative evaluation was performed by examination for gatigue crack origin in two prepared ductile irons specimens which have different microstructures using rotary bending fatigue tester, Series A has mixed microstructure. ferrite plus pearlite, and series B has bainitic microstructure. Obtained main results are as follows. The scatterings of fatigue strength were observed on σ(sub)α-Ν diagram of both specimen series, and it is observed that scatterings of series A were more serious. It is reasonable to evaluate the size of mesocrack range by means of √A(원문참조), where A means the area of mesocrack range including globular graphite nodule. As a result of reconsideration for the fatigue data by introduction of K(sub)α-Ν diagram, the scattrings of fatigue life were, remarkably. reduced. Therefore, it is more reasonable to evaluate of mesocrack range on fatigue life by parameter K(sub)α rather than σ(sub)α.

Fatigue Life Evaluation of an Actual Structure under the Irregular Loading using an Acceleration Test (가속시험을 통한 불규칙하중을 받는 실구조물의 피로수명평가)

  • 김형익;배봉국;박재실;석창성;모진용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.166-169
    • /
    • 2004
  • A fatigue test was used to evaluate the fatigue life of an actual structure. The loaded state and the constraint condition of an actual structure must be same as the specimen in order to apply the test results to an actual structure by the specimen. The loaded state and constraint conditions can't be same as the specimen in the actual structure which is complicated. In order to reduce these differences, an actual structure test with a lot of frequencies is need to get a fatigue life curve. Therefore, ten sets of accelerated test units which attached unbalanced mass were composed in this study. Acceleration history about the vibration of an actual structure was acquired. Rainflow counting was used on acceleration history, and the life curve return formula was assumed. The return formula that damage satisfied `1' was acquired in a feedback process by the Miner's rule, which was the linear cumulative damage theory. A conservative fatigue life curve was determined with a return formula to have been presumed by each set. The fatigue life of regular rpm condition was calculated by these conservative fatigue life curves.

  • PDF

Sensitivity study for important parameters of VIV fatigue evaluation of SCR

  • Lee, Sung-Je;Kang, Chanhoe;Jang, Changhwan;Park, Sung-Gun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.66-74
    • /
    • 2017
  • Since risers have to be operated without being replaced during the design life time after installation, fatigue evaluation as well as strength analysis should be performed. The fatigue life of the riser is known to be dominantly influenced by wave loading and vortex induced vibration (VIV) phenomena. The fatigue life evaluation method and the behavior characteristics of the riser by the wave have been done a lot. Even though the VIV is an important source of fatigue damage for SCR, the evaluation method and behavior characteristics by VIV have not been studied relatively. Most of the S / W for calculating VIV fatigue are a semi-empirical model based on various theoretical models and experiments. For better understanding of VIV response, it is necessary to investigate the effect of parameters which affects the analysis result. This paper summarizes the results of parametric study performed to enhance the understanding of relationship between each parameter and fatigue analysis result.

The Evaluation of Safety and Remaining Life on Fracture and Fatigue in Rail Steel (철도레일의 파괴 및 피로에 대한 안전도평가 및 잔류수명계산)

  • 박용걸
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.120-128
    • /
    • 1995
  • The fatigue failure of rail is a principal source of derailment accidents. The reduction of fatigue failures can be achieved by Intensive track maintenance and periodic safety assessments for the railway. For the safety assessments, it is required to have more accurate knowledge for fatigue behavior such as the crack initiation, propagation, crack growth rate and the remaining service life in rail. In this paper, the mean stress effects for the fatigue behavior of rail steel are studied. For this study, the fatigue test is conducted and some equations for fatigue evaluation are applied and compared. From the results, we can see that the fatigue crack growth rate is the more increased as the men stress Is the more increased, the mean stress effect is represented well by the combination of stress intensity factor range and maximum stress intensity factor and Crooker and Range's equation represented by ${\Delta}K, K_{max}$ is the best fit for fatigue evaluation and safety assessment of rail.

  • PDF

A Study on Fatigue Crack Propagation Analysis and Fatigue Strength Evaluation for Bulk Carrier (살물선의 피로균열 전파해석과 피로강도 평가에 대한 연구)

  • 엄동석;김충희
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.112-124
    • /
    • 1993
  • It has been reported that fatigue damage sometimes occurred at the stress concentrated and dynamic loaded structural members of bulk carrier. In this paper, studies on fatigue strength of hull structures are reviewed, and the program for evaluating fatigue strength is developed. And the fatigue crack initiation and propagation on the end part of cargo hold frame of bulk carrier were calculated by FEM stress analysis and the fatigue strength evaluation program. These method can be applied not only to the crack initiation life but also to crack propagation life for the hull structural members at the hull design stage and be effective as the guideline to prevent the crack initiation or to estimate the fatigue strength for repairing of the fatigue damaged structures of real ships.

  • PDF

Fatigue Life Evaluation of Motor Block Bracket Units for KTX-Sancheon Trains (KTX-산천 열차용 모터 감속기 고정대의 피로 수명 평가)

  • Lee, Chan-Woo;Lee, Dong-Hyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.626-631
    • /
    • 2012
  • In this study, fatigue life of the motor block bracket units for KTX-Sancheon trains was assessed. Design evaluation for railway structures was performed based on the UIC 566 regulation, and test and evaluation of fatigue life in welded parts was performed in accordance with standard ERRI B 12/RP17 and ERRI B 12/RP60. The actual vehicle dynamic stress testing was executed in KTX-Sancheon service line with the service operating speed. The dynamic stress was measured with commercial data acquisition system (MGC plus). The cumulative damage was evaluated by applying standard BS 7608 - Class F and cycle counting was used rain-flow counting method. As a result, the motor block bracket units for KTX-Sancheon trains was designed to fit the regulation and the safety of fatigue life for 30 years, assuming that KTX-Sancheon trains travels 600,000km annually, were confirmed under current operating conditions.

Low Cycle Fatigue Life Evaluation of External Grooved C-shaped Specimen (외경홈을 지닌 C형 시험편의 저주기 피로수명평가)

  • Lee, Song-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.199-208
    • /
    • 1997
  • A local strain approach was applied to an external single and double grooved C-shaped specimen in order to evaluate and predict the fatigue crack initiation life by using low cycle fatigue properties. The low cycle fatigue properties were determined from the strain-controlled fatigue tests using smooth cylindrical axial specimens. Fatigue crack initiation life was evaluated by a life prediction software, FALIPS, based on the local strain approach. The fatigue life was significantly influenced by the mean stress, and SWT parameter represented the fatigue life effectively. The predicted fatigue crack initiation life was then compared to the experimental fatigue life evaluated from the C-shaped fatigue test specimens. A good correlation was found between the experimental and predicted fatigue lives within factors of 2 and 4 for the single and double grooved C-shaped specimens respectively. Also, experimental fatigue life of the double grooved specimen was 10-12 times longer than that of the single grooved specimen.

Development of Material Properties Measurement and Fatigue Life Evaluation System (재료물성치 측정 및 피로수명평가 시스템의 개발)

  • 박종주;서상민;최용식;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1465-1473
    • /
    • 1994
  • This paper describes the development strategy and contents of a fatigue life evaluation system, FLEVA. The system is composed of 4 parts; material properties, load histories, cycle counting and life prediction. The cycle counting is based on the rain-flow counting method and peak counting method, and the life prediction is performed based on the linear damage rule. Material properties(static, fatigue) are also provided as a database obtained by a computer aided test system. Case study is performed to verify the developed program.

3-Dimensional Fatigue Life Evaluation for Major Components of Nuclear Power Plant (원전 주요기기의 3차원 피로수명 평가)

  • Ahn, Min-Yong;Bae, Sung-Ryul;Park, Young-Jae;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Jhung, Myung-Jo;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.102-107
    • /
    • 2004
  • In general, major components of nuclear power plant have been evaluated based on 2-dimensional design codes conservatively. However, more exact assessment is necessary for continued operation beyond the design life. In this paper, 3-dimensional stress and fatigue analyses reflecting full geometry and monitored operating condition of reactor pressure vessel have been carried out. The analyses results showed that conservatism of current 2-dimensional evaluation based on design transient. Therefore, it is anticipated that the schemes developed from this research such as 3-dimensional finite element modeling, stress analysis and fatigue analysis related techniques can be utilized as fundamental tools for exact lifetime evaluation and license renewal of major nuclear components.

  • PDF