• 제목/요약/키워드: Fatigue failure

검색결과 1,025건 처리시간 0.024초

마그네슘합금의 피로파손수명의 누적확률분포특성과 신뢰성에 미치는 경계조건의 영향 (Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy)

  • 최선순
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.594-599
    • /
    • 2011
  • 본 논문은 마그네슘합금 AZ31의 피로파손수명의 확률론적 특성과 신뢰성에 미치는 경계조건의 영향을 평가하였다. 경계조건으로 시편두께와 응력비 그리고 최대피로하중을 적용하였으며, 각 경계조건별로 세부 실험조건에 대한 피로균열전파실험을 수행하여 피로파손수명에 대한 통계 데이터를 획득하였다. 마그네슘합금의 피로파손수명의 통계적 해석을 위하여 3-모수 와이블분포를 사용하였다. 시편두께가 두꺼울수록, 응력비가 클수록, 그리고 최대피로하중이 작을수록 통계적 피로파손수명이 길게 나타났다. 반면에 시편두께가 얇을수록, 응력비가 작을수록, 그리고 최대피로하중이 클수록 신뢰성이 급격히 감소하였다.

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

Low-Cycle Fatigue Failure Prediction of Steel Yield Energy Dissipating Devices Using a Simplified Method

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1384-1396
    • /
    • 2018
  • One of the failure modes observed in steel yield energy dissipating devices (SYEDs) excited by a strong earthquake would be the low-cycle fatigue failure. Fatigue cracks of a SYED are prone to initiate at the notch areas where stress concentration is usually occurred, which is demonstrated by the cyclic tests and analyses carried out for this study. Since the fatigue failure of SYEDs dramatically deteriorates their structural capacities, the thorough investigation on their fatigue life is usually required. To do this, sophisticated modeling with considering a time-consuming and complicate fracture mechanism is generally needed. This study makes an effort to investigate the low-cycle fatigue life of SYEDs predicted by a simplified method utilizing damage indices and fatigue prediction equations that are based on the plastic strain amplitudes obtained from typical finite element analyses. This study shows that the low-cycle fatigue failure of SYEDs predicted by the simplified method can be conservatively in good agreement with the test results of SYED specimens prepared for experimental validation.

십자형 필릿 용접부에서 재료 두께 및 용접 층수에 따른 피로파괴 특성 (Characteristics of Fatigue Failure according to Thickness of Material and Number of Passes in Cruciform Fillet Weld Zone)

  • 이용복
    • Journal of Welding and Joining
    • /
    • 제28권6호
    • /
    • pp.45-50
    • /
    • 2010
  • Most of joining processes for machine and steel structure are performed by butt and fillet welding. The mechanical properties and fatigue strength of their welding zone can be effected largely by the differential of generated heat and changes of grain size according to thickness of material and number of passes in welding process. In this study, it was investigated about characteristics of fatigue failure according to thickness of material and number of passes in cruciform fillet weld zone as the basic study for safe and economic design of welding structures. Fracture modes in cruciform fillet weld zone are classified into toe failure and root failure according to non-penetrated depth. It can be accomplished economic design of welding structures considering fatigue strength when the penetrated depth in fillet weld zone is controled properly.

A review of fatigue failures in LWR plants in Japan

  • Kunihiro, Iida
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1996년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.19-34
    • /
    • 1996
  • A review was made of fatigue failures of nuclear power plant components in Japan, which were experienced in service and during periodical inspection. No case has been recently reported of a service fatigue failure of a reactor pressure vessel itself, excluding nozzle corner cracks, that occurred many years ago. But, service fatigue failures have been occasionally experienced in piping systems, pumps, and valves, on which fatigue design seems to have been inadequately applied. The causes of fatigue failures can be divided into two categories: mechanical-vibration-induced fatigue and thermal-fluctuation-induced fatigue. Vibration-induced fatigue failure occurs more frequently than is generally thought. The lesson gleaned from the present survey is a recognition that a service fatigue failure may occur due to any one or a combination of the following factors: (1) lack of communication between designers and fabrication engineers, (2) lack of knowledge about a possibility of fatigue failure and poor consideration about the effects of residual stresses, (3) lack of consideration on possible vibration in the design and fabrication stages, and (4) lack of fusion or poor penetration in a welded joint.

  • PDF

점용접시편의 극한하중과 피로특성에 관한 실험적 고찰 (An Experimental Investigation of Limit Loads and Fatigue Properties of Spot Welded Specimens)

  • 이형일;김남호;이태수
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.38-51
    • /
    • 2000
  • The study on the mechanical behavior of a spot-welded specimen is largely divided into the quasi-static overload failure analysis and the fatigue failure prediction. The main issue in an overload analysis is to examine the critical loads, thereby providing a generalized overload failure criterion. As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. In this study, we first present the limit loads of 4 representative types of single spot-welded specimens in terms of the base metal yield strength and specimen geometries. Recasting the load vs. fatigue life relationships experimentally, obtained here, we then predict the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key, role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot.

Modeling of wind-induced fatigue of cold-formed steel sheet panels

  • Rosario-Galanes, Osvaldo;Godoy, Luis A.
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.237-259
    • /
    • 2014
  • Wind-induced failure around screwed connections has been documented in roof and wall cladding systems made with steel sheet cold-formed panels during high wind events. Previous research has found that low cycle fatigue caused by stress concentration and fluctuating wind loads is responsible for most such failures. A dynamic load protocol was employed in this work to represent fatigue under wind effects. A finite element model and fatigue criteria were implemented and compared with laboratory experiments in order to predict the fatigue failure associated with fluctuating wind loads. Results are used to develop an analytical model which can be employed for the fatigue analysis of steel cold-formed cladding systems. Existing three dimensional fatigue criteria are implemented and correlated with fatigue damage observed on steel claddings. Parametric studies are used to formulate suitable yet simple fatigue criteria. Fatigue failure is predicted in different configurations of loads, types of connections, and thicknesses of steel folded plate cladding. The analytical model, which correlated with experimental results reported in a companion paper, was validated for the fatigue life prediction and failure mechanism of different connection types and thicknesses of cold-formed steel cladding.

십자형 필릿 용접부에서의 피로파괴 형상과 특성 (Patterns and Characteristics of Fatigue Failure in Cruciform Fillet Weld Joint)

  • 이용복;정준기;박상흡
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.67-72
    • /
    • 2011
  • The proportion of the welding in the production process of machinery, buildings and marine structures is increasing and the joining are mainly conducted by butt and fillet weld. In the case of fillet weld, the shape of structures is complicated depending on the constraint on the geometry of the structures, therefore, the full penetration is mostly difficult. Accordingly, it is necessary to establish safe and economical criteria of design of the structures through the strength based on the penetration state of the fillet weld. Patterns of fatigue failure in cruciform fillet weld jont appear in the form of the root, toe and mixed failure. In the case of toe and mixed failure, the fatigue strength is higher than root failure. Therefore, we have to make the enough depth of penetration or perform the welding work through improving the fatigue strength of cruciform joints in welded structures. So it is necessary to optimize the penetrated depth in the range of the possible mixed failure and find the way in the cost-effective design to lessen the amount of the welding work.

파손확률에 따른 마그네슘합금의 피로설계수명 예측 (Prediction of Fatigue Design Life in Magnesium Alloy by Failure Probability)

  • 최선순
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.804-811
    • /
    • 2010
  • The fatigue crack propagation is stochastic in nature, because the variables affecting the fatigue behavior are random and have uncertainty. Therefore, the fatigue life prediction is critical for the design and the maintenance of many structural components. In this study, fatigue experiments are conducted on the specimens of magnesium alloy AZ31 under various conditions such as thickness of specimen, the load ratio and the loading condition. The probability distribution fit to the fatigue failure life are investigated through a probability plot paper by these conditions. The probabilities of failure at various conditions are also estimated. The fatigue design life is predicted by using the Weibull distribution.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.