• Title/Summary/Keyword: Fatigue damage coefficient

Search Result 31, Processing Time 0.026 seconds

Estimation of Fatigue Damage Due to Rolling Contact in a Railway Wheel Using FEM Analysis (유한요소법을 이용한 철도 차륜에서 구름 접촉으로 인한 피로손상 평가)

  • Lee, Sang-Hoon;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Fatigue damage on the train wheel surface was estimated by considering the effect of friction coefficient of rolling on the contact surface between the wheel and rail during operation. From FEM analys, the maximum Tresca stress was 550.7 MPa at a depth of 2.07 mm under the maximum contact pressure ($P_{max}$ = 894.3 MPa) between wheel and rail. The maximum stress continued to increase along with the increase in the frictional coefficient. The fatigue initiation lifetime of the wheel by the rolling contact was predicted using the Smith-Watson-Topper (SWT) equation and the maximum principal strain equation (${\varepsilon}$-N).

Study on Optimization of Fatigue Damage Calculation Process Using Spectrum (스펙트럼을 이용한 피로손상도 계산과정 최적화 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Offshore structures are exposed to low- and high-frequency responses due to environmental loads, and fatigue damage models are used to calculate the fatigue damage from these. In this study, we tried to optimize the main parameters used in fatigue damage calculation to derive a new fatigue damage model. A total of 162 bi-modal spectra using the elliptic equation were defined to describe the response of offshore structures. To calculate the fatigue damage from the spectra, time series were generated from the spectra using the inverse Fourier transform, and the rain-flow counting method was applied. The considered optimization variables were the size of the frequency increments, ratio of the time increment, and number of repetitions of the time series. In order to obtain optimized values, the fatigue damage was calculated using the parameter values proposed in previous work, and the fatigue damage was calculated by increasing or decreasing the proposed values. The results were compared, and the error rate was checked. Based on the test results, new values were found for the size of the frequency increment and number of time series iterations. As a validation, the fatigue damage of an actual tension spectrum found using the new proposed values and fatigue damage found using the previously proposed method were compared. In conclusion, we propose a new optimized calculation process that is faster and more accurate than the existed method.

A Study on Fatigue Crack Propagation Analysis and Fatigue Strength Evaluation for Bulk Carrier (살물선의 피로균열 전파해석과 피로강도 평가에 대한 연구)

  • 엄동석;김충희
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.112-124
    • /
    • 1993
  • It has been reported that fatigue damage sometimes occurred at the stress concentrated and dynamic loaded structural members of bulk carrier. In this paper, studies on fatigue strength of hull structures are reviewed, and the program for evaluating fatigue strength is developed. And the fatigue crack initiation and propagation on the end part of cargo hold frame of bulk carrier were calculated by FEM stress analysis and the fatigue strength evaluation program. These method can be applied not only to the crack initiation life but also to crack propagation life for the hull structural members at the hull design stage and be effective as the guideline to prevent the crack initiation or to estimate the fatigue strength for repairing of the fatigue damaged structures of real ships.

  • PDF

Service life prediction of chloride-corrosive concrete under fatigue load

  • Yang, Tao;Guan, Bowen;Liu, Guoqiang;Li, Jing;Pan, Yuanyuan;Jia, Yanshun;Zhao, Yongli
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • Chloride corrosion has become the main factor of reducing the service life of reinforced concrete structures. The object of this paper is to propose a theoretical model that predicts the service life of chloride-corrosive concrete under fatigue load. In the process of modeling, the concrete is divided into two parts, microcrack and matrix. Taking the variation of mcirocrack area caused by fatigue load into account, an equation of chloride diffusion coefficient under fatigue load is established, and then the predictive model is developed based on Fick's second law. This model has an analytic solution and is reasonable in comparison to previous studies. Finally, some factors (chloride diffusion coefficient, surface chloride concentration and fatigue parameter) are analyzed to further investigate this model. The results indicate: the time to pit-to-crack transition and time to crack growth should not be neglected when predicting service life of concrete in strong corrosive condition; the type of fatigue loads also has a great impact on lifetime of concrete. In generally, this model is convenient to predict service life of chloride-corrosive concrete with different water to cement ratio, under different corrosive condition and under different types of fatigue load.

Effect of coating thickness on contact fatigue and wear behavior of thermal barrier coatings

  • Lee, Dong Heon;Jang, Bin;Kim, Chul;Lee, Kee Sung
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.5
    • /
    • pp.499-504
    • /
    • 2019
  • The effect of coating thickness on the contact fatigue and wear of thermal barrier coatings (TBCs) are investigated in this study. The same bondcoat material thickness (250 ㎛) are used for each sample, which allows the effect of the coating thickness of the topcoat to be investigated. TBCs with different coating thicknesses (200, 400, and 600 ㎛) are prepared by changing processing parameters such as the feeding rate of the feedstock, spraying speed, and spraying distance during APS(air plasma spray) coating. The damage size on the surface are strongly affected by the coating thickness effect. Although the damage size from contact fatigue using a spherical indenter diminish at a TBC of 200 ㎛, a high wear resistance such as a low friction coefficient and little mass change are found at a TBC of 600 ㎛. These results indicate that the coating thickness strongly affects the mechanical behavior in TBCs during gas turbine operation.

Remaining Fatigue Life Evaluation of Steel Railroad Bridge (강철도교의 잔존피로수명 평가)

  • Kim, Sang Hyo;Lee, Sang Woo;Mha, Ho Seong;Kim, Jong Hak
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.329-338
    • /
    • 1999
  • A systematic procedure to evaluate fatigue damages and to predict remaining fatigue lives is introduced for a steel railway bridge. Fatigue damages are evaluated by using the currently available fatigue damage theory. Fatigue lives with the condition of fatigue crack initiation are estimated by the probabilistic approach based on the reliability theory as well as the simplified procedure. A equivalent deterministic procedure is also suggested to assess the remaining fatigue life under various traffic conditions. Numerical simulations are used to assess dynamic stress histories with correction factors. Loading models are obtained from the passenger volume data. Train coincidences are also considered. Based on the results, the fatigue life is found to be underestimated by without considering the coincidence of trains on the bridge. The simplified method proposed in this study are found to yield approximately the same results as the systematic procedure.

  • PDF

Effect of Metal Removal and Traction Force on Contact Fatigue Life (견인력과 접촉표면 제거가 접촉피로수명에 미치는 영향)

  • Seo Jung-Won;Hur Hun-Mu;Choi Jae-Boong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1384-1391
    • /
    • 2005
  • Damage often occurs on the surface of railway wheels due to wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue lift by the metal removal of the contact surface were investigated by many researchers, but they have not considered initial residual stress and traction force. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. The traction force and residual stress are operated on wheels of locomotive and electric motor vehicle. In this study, the effect of metal removal depth on the contact fatigue life for a railway wheel has been evaluated by applying lolling contact fatigue test. The effect of the traction force and metal removal on the contact fatigue life has been estimated by finite element analysis. It has been found that the initial residual stress determines the amount of metal removal depth if the traction coefficient is less than 0.15. If the traction coefficient is greater than 0.2, however, the amount of metal removal depth is independent on the intial residual stress.

A Study on Estimation of Fatigue Life of Aged Continuous Welded Rail using the Field Test (현장측정을 통한 노후 레일의 피로수명 평가에 관한 연구)

  • Kong, Sun-Yong;Sung, Deok-Yong;Kim, Jun-Hyung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.352-364
    • /
    • 2007
  • It is essential to reduce track maintenance costs and to extend the periodic replacements of continuous welded rails based on accumulated passing tonnage. As recently train load decrease and rail joints wear down less, the periodic replacements of continuous welded rails can be extended. There are many kinds of rail damage like squat, head-check and corrugation. These can be taken nondestructive or naked eye test. So the periodic replacements of continuous welded rails based on accumulated passing tonnage were examine with focusing on a crack of rail bottom of continuous welded rail. Therefore, this study measure dynamic response of track by metro train load, it compute impact coefficient and track spring coefficient for estimating a condition of actual track system. Also, it is converted the measured stress waveform into stress frequency histogram by the rain-flow counting methods, and then the equivalence of stress is calculated. As apply s-n curve of a new welded rail, accumulated fatigue damage ratio of laid rail and remaining service lives is estimated. This study suggest a plan of the periodic replacements of continuous welded rails based on accumulated passing tonnage classified by the types of track system.

  • PDF

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

A Study to Evaluate Performance of Poly-Urethane Polymer Concrete for Long-Span Orthotropic Steel Bridge (장경간 강바닥판 케이블교량에 적용하기 위한 폴리우레탄 폴리머콘크리트의 공용특성 연구)

  • Park, Heeyoung;Lee, Junghun;Kwak, Byeongseok;Choi, Iehyun;Kim, Taewoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES: The purpose of this study is to evaluate physical properties, durability, fatigue resistance, and long-term performance of poly-urethane concrete (PU) which can be possible application of thin layer on long-span orthotropic steel bridge and to check structural stability of bridge structure. METHODS : Various tests of physical properties, such as flexural strength, tensile strength, bond strength and coefficient of thermal expansion tests were conducted for physical property evaluation using two types of poly urethane concrete which have different curing time. Freezing and thawing test, accelerated weathering test and chloride ion penetration test were performed to evaluate the effect of exposed to marine environment. Beam fatigue test and small scale accelerated pavement test were performed to assess the resistance of PU against fatigue damage and long-term performance. Structural analysis were conducted to figure out structural stability of bridge structure and thin bridge deck pavement system. RESULTS: The property tests results showed that similar results were observed overall however the flexural strength of PUa was higher than those of PUb. It was also found that PU materials showed durability at marine environment. Beam fatigue test results showed that the resistances of the PUa against fatigue damage were two times higher than those of the PUb. It was found form small scale accelerated pavement test to evaluate long-term performance that there is no distress observed after 800,000 load applications. Structural analysis to figure out structural stability of bridge structure and thin bridge deck pavement system indicated that bridge structures were needed to increase thickness of steel deck plate or to improve longitudinal rib shape. CONCLUSIONS: It has been known that the use of PU can be positively considered to thin layer on long-span orthotropic steel bridge in terms of properties considered marine environment, resistance of fatigue damage and long-term performance.