This study was perfromed to develop the assessment guideline and endpoints for clinical trial with anticancer herbal medicine. The botanical products used to humans for long time may be applied to phase 3 clinical trial after submitting the evidences for safety and efficacy of them or completion of basic requirement of phase 1 and phase 2 for safety confirmation and dose determination. Syndrome improvement was chiefly evaluated by Zubrod and karnofsky(%) methods. We suggest the general clinical trial assessment with botanical products, by following assessment points, that is, tumor size for 50 points, survival fate for 10 points, major syndromes for 40 points. It is recommendable that the each symptom of Qi deficiency syndrome, blood deficiency syndrome and Qi stagnation syndrome was allocated by assessment points, Similarly, the each symptom was given the assessment points according to the severity of symptom, for example, slight for 3 points, moderate for 2 points and severe for 1 point in hepatocelluar carcinoma and lung cancer. Then, the efficacy of botanical products was evaluated by the difference between pre-treatment and post-treatment. Asking the neoplastic patients of questionnaire on physical, emotional, cognitive, social and role subjects availability, three more syndromes (Fatigue, Pain and Nausea/Vomit), quality of life(QOL) will be evaluated by GLM statistics. In addition, in case of lung cancer, 13 questions will be asked by the EORTC QLQ-C13 forms. As the assessment of endpoints for efficacy to reduce side effects induced by chemotherapy and radiotherapy, the data of image scanning and hemato-urinalysis can be usefully applied on immune response, weight loss, indigestion, hemopoietic damage and injury of liver and kidney, while the changes of syndromes of side effect can be evaluated by differentiation methods of Qi and blood and five viscera. However, it is still necessary to determine the ratio between scientific analytical method and Oriental differentiation method as well as confirm the Oriental assessment endpoints by clinical trial. In addition, we suggest the continuous development of assessment endpoints on other carcinomas except of hepatocelluar carcinoma and lung cancer in future.
The development of marine technology is expected to increase the demand for marine plants because of increasing oil prices. Therefore, there is also expected to be an increase in the demand for cylindrical structures such as URF (umbilical, riser, flowline) structures and spars, which are used operating in various seas. However, a cylindrical structure experiences vortex induced motion (VIM) in a current. In particular, for risers and umbilicals, it is important to identify the characteristics of the VIM because interference between structures can occur. In addition, various studies have been conducted to reduce VIM because it is the cause of fatigue damage to structures. The helical strake, which was developed for VIM reduction, has an excellent VIM reduction performance, but is difficult to install on structures and has a negative effect on heave motion. Therefore, the purpose of this study was to supplement the shortcomings of the helical strake and develop a high-performance reduction device. In the reduction device developed in this study, a string is placed around the structure inside the flow, causing vibration. The vibration of this string causes a small turbulence in the flow field, reducing the VIM effect on the structure. Finally, in this study, the 2-DOF motion characteristics of models without a suppression device, models with a helical strake, and models with a string were investigated, and their reduction performances were compared through model tests.
The purpose of this study was to investigate the effects of ingestion of rabies and ginseng fruit extracts on alcohol hangover, liver damage protection, fatigue recovery, and physical strength improvement. A total of 64 volunteers aged over 20 were participated in this study and the randomized and repeated measures design method was used to divide a group of participants with a random assignment. All participants were divided into 4 groups (n=16) treated with hoveni dulcis thunb extract + ginseng berry extract (ARI 1000), hoveni dulcis thunb extract, ginseng berry extract, and placebo. As a result of respiratory alcohol concentration change, the group treated with ARI 1000 was significantly lower than the group treated with hoveni dulcis thunb extract, ginseng berry extract, and placebo in 1 hour of drinking, and significantly lower than the placebo group in 2 hours and 3 hours of drinking (p<0.05). After 2 and 3 hours of alcohol consumption, blood alcohol concentration of the group treated with rabies ARI 1000 was significantly lower than those of the other 3 groups (p <0.05). In conclusion, ingestion of ARI 1000 before drinking may significantly reduce the respiratory and blood alcohol concentrations, which may induce an effect on the hangover effect.
As aging infrastructures increase along with time, the efficient maintenance becomes more significant and accurate responses from the sensors are pre-requisite. Among various responses, strain is commonly used to detect damage such as crack and fatigue. Optical fiber sensor is one of the promising sensing techniques to measure strains with high-durability, immunity for electrical noise, long transmission distance. Fiber Bragg Grating (FBG) is a point sensor to measure the strain based on reflected signals from the grating, while Brillouin Optic Correlation Domain Analysis (BOCDA) is a distributed sensor to measure the strain along with the optical fiber based on scattering signals. Although the FBG provides the signal with high accuracy and reproducibility, the number of sensing points is limited. On the other hand, the BOCDA can measure a quasi-continuous strain along with the optical fiber. However, the measured signals from BOCDA have low accuracy and reproducibility. This paper proposed a multi-fidelity data-fusion method based on Gaussian Process Regression to improve the fidelity of the strain distribution by fusing the advantages of both systems. The proposed method was evaluated by laboratory test. The result shows that the proposed method is promising to improve the fidelity of the strain.
The mechanical reliability of flexible devices has become a major concern on their commercialization, where the importance of reliable bonding is highlighted. In terms of component materials' properties, it is important to consider thermal damage of polymer substrates that occupy large area of the flexible device. Therefore, room temperature bonding process is highly advantageous for implementing flexible device assemblies with mechanical reliability. Conventional epoxy resins for the bonding still require curing at high temperatures. Even after the curing procedure, the bonding joint loses flexibility and exhibits poor fatigue durability. To solve this problems, low-temperature and adhesive-free bonding are required. In this work, we develop a room temperature bonding process for polymer substrates using carbon nanotube heated by microwave irradiations. After depositing multiple-wall carbon nanotubes (MWNTs) on PET polymer substrates, they are heated locally with by microwave while the entire bonding specimen maintains room temperature and the heating induces mechanical entanglement of CNT-PET. The room temperature bonding was conducted for a PET/CNT/PET specimen at 600 watt of microwave power for 10 seconds. Thickness of the CNT bonding joint was very thin that it obtains flexibility as well. In order to evaluate the mechanical reliability of the joint specimen, we performed lap shear test, three-point bending test, and dynamic bending test, and confirmed excellent joint strength, flexibility, and bending durability from each test.
Depression is a psychiatric disorder characterized by depressed mood, anhedonia, fatigue, and altered cognitive function, leading to a decline in daily functioning. In addition, depression is a serious and common mental illness not only in an individual's life but also in society, so it must be actively treated. Autophagy is involved in the pathophysiological mechanism of mental illness. According to a recent study, it is known that autophagy-induced apoptosis affects neuroplasticity and causes depression and that antidepressants regulate autophagy. Autophagy is a catabolic process that degradation and removes unnecessary organelles or proteins through a lysosome. And, it is essential for maintaining cellular homeostasis. Autophagy is activated in stress conditions, and depression is a stress-related disease. Stress causes damage to cellular homeostasis. Recently, although the role of autophagy mechanisms in neurons has been investigated, the autophagy of depression has not been fully studied. This review highlights the new evidence for the involvement of autophagy in the pathophysiological mechanisms and treatment of depression. To highlight the evidence, we present results from clinical and preclinical studies showing that autophagy is associated with depression. Understanding the relevance of autophagy to depression and the limitations of research suggest that autophagy regulation may provide a new direction for antidepressant development.
The general non-destructive inspection method for anchor bolts in Korea applies visual inspection and hammering inspection, but it is difficult to check corrosion or fatigue cracks of anchor bolts in the part included in the foundation or in the part where the nut and base plate are installed. In reality, objective investigation is difficult because inspection is affected by the surrounding environment and individual differences, so it is necessary to develop non-destructive inspection technology that can quantitatively estimate these defects. Inspection of the anchor bolts of domestic road facilities is carried out by visual inspection, and since the importance of anchor bolts such as bridge bearings and fall prevention facilities is high, the life span of bridges is extended through preventive maintenance by developing non-destructive testing technology along with existing inspection methods. Through the development of this technology, non-destructive testing of anchor bolts is performed and as a technology capable of preemptive/active maintenance of anchor bolts for road facilities, practical use is urgently needed. In this paper, the possibility of detecting defects in anchor bolts such as corrosion and cracks and reliability were experimentally verified by applying the ultrasonic test among non-destructive inspection techniques. When the technology development is completed, it is expected that it will be possible to realize preemptive/active maintenance of anchor bolts by securing source technology for improving inspection reliability.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70