• Title/Summary/Keyword: Fatigue cycle ratio

Search Result 118, Processing Time 0.027 seconds

A Study on the Fatigue Fracture Behavior in Butt Welded Joints of Steel Structures (강구조물(鋼構造物) 맞대기 용접연결부(鎔接連結部)의 피로파괴거동(疲勞破壞擧動)에 관한 연구(硏究))

  • Park, Je Seon;Chung, Yeong Wha;Kim, Jeong Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.53-62
    • /
    • 1986
  • For the research on the fatigue fracture behavior in the welded joints of steel structures, base metal specimens and welded ones were selected, and the direct fatigue tests were carried out. Thereafter, fatigue-life (S-N) curves, plastic strain-number of cycles (${\varepsilon}_p$-N) curve, the extrapolated fatigue-life (${\varepsilon}_p$-$N_c$) curve, and da/dN-${\Delta}K$ curves were plotted. By these results the followings were obtained. It was shown that the ratio of fatigue strength at $2{\times}10^6$ cycles of the welded specimen to that of the base metal one was 0.6, and that 0.72 for the base metal and 0.65 for the welded one were the ratio of fatigue strength at $2{\times}10^6$ cycles to yielding stress. The S-N curve for the welded specimen was separated into two sections, the low gradient section and the steep section. As this result, it was shown that the more stress became to reduce, the more the reduction of fatigue strength became to be great. It was shown that fatigue strength at $2{\times}10^6$ cycles from this case was about 83 % of that from the S-N curve plotted with one section. It was thought that the reason was that weld flaw acted greatly on the fatigue strength within the low stress range. It was shown that at the instart of crack initiation plastic strain increased abrupt1y in the case of the welded specimen more than the case of the base metal specimen, and increased abruptly in the upper stress range in both cases. It was shown that the experimental constant ${\alpha}$, 0.42, in the base metal nearly accorded with Manson-Coffin's result, but this made a great difference with the case in the welded specimen. It was thought that it was due to the abrupt change of plastic strain and the influence of weld flaw.

  • PDF

Evaluation of Fatigue Degradation in SUS316L Using Nonlinear Ultrasonics (초음파의 비선형 특성을 이용한 SUS316L 재료의 피로 열화 평가에 관한 연구)

  • Choi, Ik-Hwang;Baek, Seung-Hyun;Lee, Tae-Hun;Jhang, Kyung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • This study evaluated the fatigue degradation in a SUS316L specimen using the nonlinear ultrasonic method. The nonlinearity of the ultrasonic wave was estimated by a relative nonlinear parameter defined as the ratio of the amplitudes for the fundamental wave to the second harmonic wave. In the experiment, a measurement system with contact transducers was constructed; reliable measurements were assured by keeping measurement conditions consistent and reducing extra harmonics generated in the measurement system. Two types of SUS316L specimen were used in experiments; a rotating bar fatigue specimen and a tensile fatigue specimen. The fatigue condition used was high cycle fatigue. The former specimen had a cylindrical shape and was used to observe the change in the nonlinear parameter after fatigue accumulation in a specimen. The latter was a plate-shaped specimen and was used to confirm the change in the nonlinear parameter at the position where the fatigue stress was concentrated. The measured nonlinear parameter showed a strong correlation to the damage level in both fatigue tests.

The Effect of Wheelchair Propulsion on Carpal Tunnel Syndrome of Wrist Joint

  • Kong, Jin-Yong;Kwon, Hyuk-Cheol;Chang, Ki-Yeon;Jeong, Dong-Hoon
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.7-17
    • /
    • 2004
  • Individuals who propel wheelchairs have a high prevalence of upper extremity injuries (i.e., carpal tunnel syndrome, elbow/shoulder tendonitis, impingement syndrome). Musculoskeletal injuries can result from overuse or incorrect use of manual wheelchairs, and can hinder rehabilitation efforts. To better understand the mechanisms of upper extremity injuries, this study investigates the motion of the wrist during wheelchair propulsion. This study also examines changes in the variables that occur with fatiguing wheelchair propulsion to determine how the time parameters of wheelchair propulsion and the state of fatigue influence the risk of injury. A two dimensional (2-D) analysis of wrist movement during the wheelchair stroke was performed. Twenty subjects propelled a wheelchair handrim on a motor-driven treadmill at two different velocities (50, 70 m/min). The results of this study were as follows; The difference in time parameters of wheelchair propulsion (cadence, cycle time, push time, recovery time, and PSP ratio) at two different velocities was statistically significant. The wrist kinematic characteristics had statistically significant differences at two different velocities, but wrist radial deviation and elbow flexion/extension had no statistically significant differences. There were statistically significant differences in relation to fatigue in the time parameter of wheelchair propulsion (70 m/min) between initial 1 minute and final 1 minute. The wrist kinematic characteristics between the initial 1 minute and final 1 minute in relation to fatigue had statistically significant differences but the wrist flexion-extension (50 m/min) had no statistically significant differences. According to the results, the risk of musculoskeletal injuries is increased by fatigue from wheelchair propulsion. To prevent musculoskeletal injuries, wheelchair users should train in a muscle endurance program and consider wearing a splinting/grove. Moreover, wheelchair users need education on propulsion posture, suitable joint position, and proper recovery patterns of propulsion.

  • PDF

Behavior of fatigue crack propagation for the deep non-through radial holed notch specimens (深孔 非貫通노치材의 疲勞크랙 傳播擧動에 관한 硏究)

  • 송삼홍;원시태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1327-1334
    • /
    • 1988
  • In this study rotating bending fatigue tests have been carried out with the deep non-through radial holed notch specimens of low carbon steels(SM 22C). It is investigated that the behaviors of surface and interior fatigue crack propagation and the variations of the shape of the cracked surface on the magnitude of bending stresses. The Obtained results are summarized as follows. (1) The relations between [Crack length] and [Cycle ratio] are expressed by following eq. in the 0.1~0.6 range of N/ $N_{f}$ long[ crack length] = A + B [N/ $N_{f}$ ] In case of surface crack length, values of A and B are uniformed independent upon the magnitude of bending stress, but those are variable according to the magnitude of bending stress for interior crack length. (2) The following eq. is derived on the surface crack propagation rate, bending stress and surface crack length. (dl/dN)=(3.94*10$^{-12}$ ).sigma.$^{4.54}$l (3) Under small stress, interior crack propagation rate increase with the interior crack growth but it decrease for large stress. (4) The shape of cracked surface depends upon the magnitude of bending stress. Under small stress fatigue crack propagates as an semi-ellipse with semi-major axis of surface crack length with semi-major axis of interior crack length for large stress.s.

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

A Study on the Life Prediction and Quality Improvement of Joint in IC Package (플라스틱 IC 패키지 접합부의 수명예측 및 품질향상에 관한 연구)

  • 신영의;김종민
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 1999
  • Thermal fatigue strength of the solder joints is the most critical issue for TSOP(Thin Small Outline Package) because the leads of this package are extremely short and thermal deformation cannot be absorbed by the deflection of the lead. And the TSOP body can be subject to early fatigue failures in thermal cycle environments. This paper was discussed distribution of thermal stresses at near the joint between silicon chip and die pad and investigated their reliability of solder joints of TSOP with 42 alloy clad lead frame on printed circuit board through FEM and 3 different thermal cycling tests. It has been found that the stress concentration around the encapsulated edge structure for internal crack between the silicon chip and Cu alloy die pad. And using 42 alloy clad, The reliability of TSOP body was improved. In case of using 42 alloy clad die pad(t=0.03mm). $$\sigma$_{VMmax}$ is 69Mpa. It is showed that 15% improvement of the strength in the TSOP body in comparison with using Cu alloy die pad $($\sigma$_{VMmax}$=81MPa). In solder joint of TSOP, the maximum equivalent plastic strain and Von Mises stress concentrate on the heel of solder fillet and crack was initiated in it's region and propagated through the interface between lead and solder. Finally, the modified Manson-Coffin equation and relationship of the ratio of $N_{f}$ to nest(η) and cumulative fracture probability(f) with respect to the deviations of the 50% fracture probability life $(N_{f 50%})$ were achieved.

  • PDF

The Fatigue Behavior and Life Analysis of Carbornitrizing SCM415 Steel under Two Level Block Loading (이단응력에서 침탄질화처리재의 피로거동 및 수명 해석)

  • 송삼홍;이상훈;심원형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.903-907
    • /
    • 1996
  • Under two level block loading, the carbornitrizing specimen can be expected to show different behavior from other uniform material because the properties of surface layer and inner material are different from each other. In this research, the modified Marco-Starkey cumulative theory, which considers load interaction effect, can predict the life of SCM415 carbornitrizing and original notched and smooth specimen, In the low-high test of carbornitrizing specimen which has long life, however, we may additionally consider the increase of life by means of the stress hardening of inner original material.

  • PDF

Hysteretic performance of the all-steel buckling-restrained brace with LY315 steel core

  • Wei, Xuan;Yang, Lu;Chen, Yohchia Frank;Wang, Meng
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.899-912
    • /
    • 2022
  • To study the seismic performance of the all-steel buckling-restrained brace (BRB) using the novel soft steel LY315 for core member, a total of three identical BRBs were designed and a series of experimental and numerical studies were conducted. First, monotonic and cyclic loading tests were carried out to obtain the mechanical properties of LY315 steel. In addition, the parameters of the Chaboche model were calibrated based on the test results and then verified using ABAQUS. Second, three BRB specimens were tested under cyclic loads to investigate the seismic performance. The failure modes of all the specimens were identified and discussed. The test results indicate that the BRBs exhibit excellent energy dissipation capacity, good ductility, and excellent low-cycle fatigue performance. Then, a finite element (FE) model was established and verified with the test results. Furthermore, a parametric study was performed to further investigate the effects of gap size, restraining ratio, slenderness ratio of the yielding segment, and material properties of the core member on the load capacity and energy dissipation capacity of BRBs.

Endurance Capacity of the Biceps Brachii Muscle Using the High-to-Low Ratio between Two Signal Spectral Moments of Surface EMG Signals during Isotonic Contractions

  • Lee, Sang-Sik;Jang, Jee-Hun;Cho, Chang-Ok;Kim, Dong-Jun;Moon, Gun-Pil;Kim, Buom;Choi, Ahn-Ryul;Lee, Ki-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1641-1648
    • /
    • 2017
  • Many researchers had examined the validity of using the high-to-low ratio between two fixed frequency band amplitudes (H/L-FFB) from the surface electromyography of a face and body as the first spectral index to assess muscle fatigue. Despite these studies, the disadvantage of this index is the lack of a criterion for choosing the optimal border frequency. We tested the potential of using the high-to-low ratio between two signal spectral moments (H/L-SSM), without fixed border frequencies, to evaluate muscle fatigue and predict endurance time ($T_{end}$), which was determined when the subject was exhausted and could no longer follow the fixed contraction cycle. Ten healthy participants performed five sets of voluntary isotonic contractions until they could only produce 10% and 20% of their maximum voluntary contraction (MVC). The $T_{end}$ values for all participants were $138{\pm}35s$ at 10% MVC and $69{\pm}20s$ at 20% MVC. Changes in conventional spectral indices, such as the mean power frequency (MPF), Dimitrov spectral index (DSI), H/L-FFB, and H/L-SSM, were extracted from surface EMG signals and were monitored using the initial slope computed every 10% of $T_{end}$ as a statistical indicator and compared as a predictor of $T_{end}$. Significant correlations were found between $T_{end}$ and the initial H/L-SSM slope as computed over 30% of $T_{end}$. In conclusion, initial H/L-SSM slope can be used to describe changes in the spectral content of surface EMG signals and can be employed as a good predictor of $T_{end}$ compared to that of conventional spectral indices.