Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.6.899

Hysteretic performance of the all-steel buckling-restrained brace with LY315 steel core  

Wei, Xuan (The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology)
Yang, Lu (The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology)
Chen, Yohchia Frank (School of Civil Engineering, Chongqing University)
Wang, Meng (School of Civil Engineering, Beijing Jiaotong University)
Publication Information
Steel and Composite Structures / v.44, no.6, 2022 , pp. 899-912 More about this Journal
Abstract
To study the seismic performance of the all-steel buckling-restrained brace (BRB) using the novel soft steel LY315 for core member, a total of three identical BRBs were designed and a series of experimental and numerical studies were conducted. First, monotonic and cyclic loading tests were carried out to obtain the mechanical properties of LY315 steel. In addition, the parameters of the Chaboche model were calibrated based on the test results and then verified using ABAQUS. Second, three BRB specimens were tested under cyclic loads to investigate the seismic performance. The failure modes of all the specimens were identified and discussed. The test results indicate that the BRBs exhibit excellent energy dissipation capacity, good ductility, and excellent low-cycle fatigue performance. Then, a finite element (FE) model was established and verified with the test results. Furthermore, a parametric study was performed to further investigate the effects of gap size, restraining ratio, slenderness ratio of the yielding segment, and material properties of the core member on the load capacity and energy dissipation capacity of BRBs.
Keywords
Buckling-restrained brace (BRB); finite element analysis; LY315 steel; parametric study; seismic performance;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Tong, J.Z. and Guo, Y.L. (2018), "Numerical investigations on elastic buckling and hysteretic behavior of steel angles assembled buckling-restrained braces", J Constr Steel Res. 144 21-39. https://doi.org/10.1016/j.jcsr.2018.01.015   DOI
2 Usami, T., Wang, C.L. and Funayama, J. (2012), "Developing high-performance aluminum alloy buckling-restrained braces based on series of low-cycle fatigue tests", Earthq Eng Struct D. 41(4), 643-661. https://doi.org/10.1002/eqe.1149   DOI
3 Wang, H.S., Nie, X. and Pan, P. (2017), "Development of a selfcentering buckling restrained brace using cross-anchored prestressed steel strands", J Constr Steel Res. 138 621-632. https://doi.org/10.1016/j.jcsr.2017.07.017   DOI
4 Wu, A.C., Lin, P.C. and Tsai, K.C. (2014), "High-mode buckling responses of buckling-restrained brace core plates", Earthq Eng Struct D. 43(3), 375-393. https://doi.org/10.1002/eqe.2349   DOI
5 Xie, Q. (2005), "State of the art of buckling-re strained braces in Asia", J Constr Steel Res. 61(6), 727-748. https://doi.org/10.1016/j.jcsr.2004.11.005   DOI
6 Xu, F., Chen, J., Shu, K. and Su, M.N. (2018), "Cyclic behaviour of double-tube buckling-restrained braces for boiler steel plant structures", J Constr Steel Res. 150 556-569. https://doi.org/10.1016/j.jcsr.2018.08.022   DOI
7 Yang, L., Wang, M., Sun, Y., Li, Z.L. and Li, Y.J. (2020), "Experimental and numerical study of LY315 steel moment connection with bolted cover plates", Thin-Walled Struct. 159 107277. https://doi.org/10.1016/j.tws.2020.107277   DOI
8 Zhang, D.B., Nie, X., Pan, P., Wang, M.Z., Deng, K.L. and Chen, Y.B. (2016), "Experimental study and finite element analysis of a buckling-restrained brace consisting of three steel tubes with slotted holes in the middle tube", J Constr Steel Res. 124 1-11. https://doi.org/10.1016/j.jcsr.2016.05.003   DOI
9 Beiraghi, H. (2018), "Energy demands in reinforced concrete wall piers coupled by buckling restrained braces subjected to nearfault earthquake", Steel Compos Struct. 27(6), 703-716. https://doi.org/10.12989/scs.2018.27.6.703   DOI
10 Cahis, X., Simon, E., Piedrafita, D. and Catalan, A. (2018), "Core behavior and low-cycle fatigue estimation of the Perforated Core Buckling-Restrained Brace", Eng Struct. 174 126-138. https://doi.org/10.1016/j.engstruct.2018.07.044   DOI
11 Chou, C.C. and Chen, S.Y. (2010), "Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces", Eng Struct. 32(8), 2108-2121. https://doi.org/10.1016/j.engstruct.2010.03.014   DOI
12 Guo, Y.L., Tong, J.Z., Wang, X.A. and Zhou, P. (2018), "Subassemblage tests and design of steel channels assembled buckling-restrained braces", B Earthq Eng. 16(9), 4191-4224. https://doi.org/10.1007/s10518-018-0337-5   DOI
13 JGJ99-2015, Technical specification for steel structure of tall buildings, China Architecture & Building Press, Beijing, (In Chinese).
14 Black, C.J., Makris, N. and Aiken, I.D. (2004), "Component testing, seismic evaluation and characterization of bucklingrestrained braces", J Struct Eng-Asce. 130(6), 880-894. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(880)   DOI
15 Shin, J., Lee, K., Jeong, S.H., Lee, H.S. and Kim, J. (2012), "Experimental and Analytical Studies on Buckling-Restrained Knee Bracing Systems with Channel Sections", Int J Steel Struct. 12(1), 93-106. https://doi.org/10.1007/s13296-012-1009-Y   DOI
16 Kim, S.H. and Choi, S.M. (2015), "Structural behavior of inverted V-braced frames reinforced with non-welded buckling restrained braces", Steel Compos Struct. 19(6), 1581-1598.   DOI
17 Shi, Q.X., Wang, F., Wang, P. and Chen, K. (2018), "Experimental and numerical study of the seismic performance of an all-steel assembled Q195 low-yield buckling-restrained brace", Eng Struct. 176 481-499. https://doi.org/10.1016/j.engstruct.2018.09.039   DOI
18 Jia, L.J., Li, R.W., Xiang, P., Zhou, D.Y. and Dong, Y. (2018b), "Resilient steel frames installed with self-centering dual-steel buckling-restrained brace", J Constr Steel Res. 149 95-104. https://doi.org/10.1016/j.jcsr.2018.07.001   DOI
19 Beiraghi, H. (2019), "Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes", Steel Compos Struct. 33(3), 389-402. https://doi.org/10.12989/scs.2019.33.3.389   DOI
20 Chaboche, J.L. (1986), "Time-Independent Constitutive Theories for Cyclic Plasticity", Int J Plasticity. 2(2), 149-188. https://doi.org/10.1016/0749-6419(86)90010-0   DOI
21 Chen, J.L., Shu, W.Y., Li, J.W. (2016), "Experimental study on dynamic mechanical property of Q235 steel at different strain rates", J Tongji University. 44(7), 2071-2075. (In Chinese)
22 Jia, L.J., Ge, H.B., Xiang, P. and Liu, Y. (2018a), "Seismic performance of fish-bone shaped buckling-restrained braces with controlled damage process", Eng Struct. 169 141-153. https://doi.org/10.1016/j.engstruct.2018.05.040   DOI
23 Dusicka, P. and Tinker, J. (2013), "Global Restraint in UltraLightweight Buckling-Restrained Braces", J Compos Constr. 17(1), 139-150. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000320   DOI
24 Hadianfard, M.A., Eskandari, F. and JavidSharifi, B. (2018), "The effects of beam-column connections on behavior of bucklingrestrained braced frames", Steel Compos Struct. 28(3), 309-318. https://doi.org/10.12989/scs.2018.28.3.309   DOI
25 JGJ297-2013, Technical specification for seismic energy dissipation of buildings, China Architecture & Building Press, Beijing, 2013 (In Chinese).
26 Razavi, S.A., Kianmehr, A., Hosseini, A. and Mirghaderi, S.R. (2018), "Buckling-restrained brace with CFRP encasing: Mechanical behavior & cyclic response", Steel Compos Struct. 27(6), 675-689. https://doi.org/10.12989/scs.2018.27.6.675   DOI
27 AISC, Seismic provisions for structural steel buildings, Chicago, 2010.
28 Ariyaratana, C. and Fahnestock, L.A. (2011), "Evaluation of buckling-restrained braced frame seismic performance considering reserve strength", Eng Struct. 33(1), 77-89. https://doi.org/10.1016/j.engstruct.2010.09.020   DOI
29 Shi, G., Gao, Y., Wang, X. and Zhang, Y. (2018), "Mechanical properties and constitutive models of low yield point steels", Constr Build Mater. 175 570-587. https://doi.org/10.1016/j.conbuildmat.2018.04.219   DOI
30 ABAQUS. Standard user's manual version 6.10. Pawtucket, RI: Hibbitt, Karlsson & Sorensen, Inc.; 2010.
31 Yan, H., Pan, P., Wang, Y.Q., Makino, T. and Qi, X. (2012), "Tests of Buckling-Restrained Braces Using Low-yield point Steel as Core Material", Appl Mech Mater. 166-169 3159-+. https://doi.org/10.4028/www.scientific.net/AMM.166-169.3159   DOI
32 Eatherton, M.R., Fahnestock, L.A. and Miller, D.J. (2014), "Computational study of self-centering buckling-restrained braced frame seismic performance", Earthq Eng Struct D. 43(13), 1897-1914. https://doi.org/10.1002/eqe.2428   DOI