• Title/Summary/Keyword: Fatigue crack growth retardation

Search Result 74, Processing Time 0.022 seconds

A Study on the Effect of the Overload Ratio on the Fatigue Crack Growth Retardation (과대하중비가 균열성장지연에 미치는 영향에 관한 연구)

  • Kim, Kyung-Su;Kim, Sung-Chan;Shim, Chun-Sik;Park, Jin-Young;Cho, Hyung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.306-311
    • /
    • 2003
  • A growing fatigue crack is known to be retarded on application of an overload cycle. The retardation may be characterized by the total number of cycles involved during retardation and the retarded crack length. The overload ratio plays an important role to influence the retardation behavior. The objective of the present investigation is to study the effect of different overload ratio on the retardation behavior. For DENT(double edge notched tension) specimens and ESET(eccentrically-loaded single edge crack tension) specimens, fatigue crack growth tests are conducted under cyclic constant-amplitude loading including a single tensile overloading with different overload ratios. The proposed crack retardation model predicts crack growth retardation due to a single tensile overloading. The predictions are put into comparison with the experimental results to confirm the reliability of this model.

  • PDF

The Fatigue Crack Growth Behavior of Laser Welded Sheet Metal Due to Single Overload (과대하중에 의한 레이저 용접 판재의 피로균열 전파거동)

  • 조우강;오택열;곽대순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.854-858
    • /
    • 2002
  • In this study, Fatigue crack growth behavior of the laser welded sheet metal due to a single overload was investigated. From Fatigue crack propagation test, it was observed that the retardation of fatigue crack growth has been more effective in the welded specimen than in the base metal. And if the distance between the welded part and the position of overload is too close the retardation of fatigue crack growth at the welded part has been decreased. From FEM analysis, it was observed the retardation has been more effective compressive residual stress than plastic zone.

  • PDF

Life Prediction by Retardation Behavior of Fatigue Crack and its Nondestructive Evaluation (피로균열의 지연거동에 따른 수명예측 및 비파괴평가)

  • Nam, Ki-Woo;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.36-48
    • /
    • 1999
  • Fatigue life and crack retardation behavior after penetration were experimentally examined using surface pre-cracked specimens of aluminium alloy 5083. The Wheeler model retardation parameter was used successfully to predict crack growth behavior after penetration. By using a crack propagation rule, the change in crack shape after penetration can be evaluated quantitatively. Advanced, waveform-based acoustic emission (AE) techniques have been successfully used to evaluate signal characteristics obtained form fatigue crack propagation and penetratin behavior in 6061 aluminum plate with surface crack under fatigue stress. Surface defects in the structural members are apt to be origins of fatigue crack growth, which may cause serious failure of the whole structure. The nondestructive analysis on the crack growth and penetration from these defects may, therefore, be one of the most important subjects on the reliability of the leak before break (LBB) design. The goal of the present study is to determine if different sources of the AE could be identified by characteristics of the waveforms produced from the crack growth and penetration. AE signals detected in four stages were found to have different signal per stage. With analysis of waveform and power spectrum in 6061 aluminum alloys with a surface crack, it is found to be capabilities on real-time monitoring for the crack propagation and penetration behavior of various damages and defects in structural members.

  • PDF

Residual Stress Fields and Fatigue Crack Growth Retardation Induced by Ring-Indentation (균열선단에 링압인 부가에 의한 잔류응력장분포와 피로균열성장지연)

  • Lim, W.K.;Song, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.597-602
    • /
    • 2001
  • A method for the retardation of fatigue crack growth using ring indentation at the vicinity of a crack is examined. Residual stresses near crack tip are evaluated using fracture mechanics approach. The motivation is to develop a simple and effective method for obtaining an increase in fatigue lives to total failure of materials with crack. Fatigue testing of aluminum specimen showed that the retardation effects are observed after the application of the method.

  • PDF

Fatigue Crack Growth Retardation Using Ring Indentation (링압인을 이용한 피로균열의 성장지연효과)

  • Im,Won-Gyun;Song,Jeong-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.27-33
    • /
    • 2003
  • A method for the retardation of fatigue crack growth using ring indentation at the vicinity of a crack is examined. Residual stresses near crack tip are evaluated using fracture mechanics approach using the Bueckner weight function. The motivation is to develop a simple and effective method for obtaining an increase in fatigue lives to total failure of materials with crack. Fatigue testing of aluminum specimen showed that the retardation effects are observed after the application of the method.

An Experimental Study on the Factors that Affect Fatigue Crack Growth Retardation Behavior in S45C Steel (S45C 강의 피로균열전파 지연거동의 영향인자에 관한 실험적 연구)

  • Kim, Seon-Jin;An, Seok-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.470-477
    • /
    • 2001
  • Constant ΔK fatigue crack growth tests were performed by applying an intermediate multiple overload for S45C steel. The purpose of the present study is to investigate effects of specimen thickness at various baseline stress intensity factor range levels (ΔK(sub)b), overload application position (a/W) and overload application frequency (OL(sub)HZ) on fatigue crack growth retardation behavior. The principal results are summarized as follows. The amount of retardation for a given ΔK(sub)b level is increased with increasing the baseline stress intensity factor range level for all specimen thickness. The normalized minimum crack growth rate is increased with increasing the specimen thickness, except for ΔK=45MPa√m. The retardation cycle is decreased with increasing a/W and increased with OL(sub)HZ.

An Experimental Study on the Factors that Affect Fatigue Crack Growth Retardation Behavior in SM45C Steel (SM45C 강의 피로균열전파 지연거동에 미치는 영향인자에 관한 실험적 연구)

  • Kim, Seon-Jin;Kim, Jong-Hoon;Ahn, Seok-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.55-60
    • /
    • 2000
  • Constant ${\Delta}K$ fatigue crack growth tests were performed applying an intermediate multiple overload for SM45C steel. The purpose of the present study is to investigate the effects of specimen thickness at various baseline stress intensity levels$({\Delta}K_b)$, overload application frequency(a/W) and overload application frequency$(OL_{HZ})$ on fatigue crack growth retardation behavior. The principal results are summarized as follows. The amount of retardation for a given ${\Delta}K_b$ level is increased with increasing the baseline stress intensity level in all specimen thickness. The normalized minimum crack growth rate is increased with increasing the specimen thickness, except for ${\Delta}K=45MPa \sqrt m$. The retardation cycle is decreased with increasing the overload application position and increased with the overload application frequency.

  • PDF

Study on the Retardation Effect of Overload on the Corrosion Fatigue Crack Propagation Al-Alloy used for the Shipbuilding (과하중에 의한 선박용 알루미늄 합금재의 부식피로 파괴지연에 관한 연구)

  • Lim, Uh-Joh;Lee, Jong-Rark;Lee, Jin-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.122-129
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuliding industries such as marine structures, ship and chemical plants, there occurs much interest in the study of corrosion fatigue characteristics which was closed up an important role in mechanical design. In this study, the 5086 Al-alloy was tested by use of rotary bending fatigue tester. The retardation effect of overload on the corrosion fatigue crack propagation in sea environment was quantitatively studied. 1) Retardation effect of corrosion fatigue crack propagation is most eminent when overload ratio is 1.52, overload magnitude corresponds to about 77% and 55% of yield strength and tensile strength respectively. 2) After overload ratio 1.52 was used, retardation of corrosion fatigue crack growth rate is largely retarded and quasi-threshold stress intensity factor range($\Delta\textrm{K}_{th}$) appears. 3) According to m of experimental constant, retardation effect of corrosion fatigue crack propagation corresponds to about 25% of constant stress amplitude when overload ratio is 1.52. 4) When overload ratio 1.52 was used, retardation parameter (RP) decreases to about 0.43 and corrosion sensitivity (S)decreses to about 2.1.

  • PDF

Retardation Behavior and Crack-Through-Thickness of a Surface-cracked Specimen under Cyclic Load (피로하중을 받는 표면균열재의 관통거동 및 지연거동)

  • 남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.88-96
    • /
    • 1991
  • Fatigue life and retardtion behavior after through-thickness were examined experimentally by using a CT specimen and surface-cracked specimen. The material used was 3% Ni-Cr-Mo steel. The fatigue crack shape before through-thickness is almost semicircular, and the measured aspect ratio is larger than the value obtained by calculation using the K value proposed by Newman-Raju. It is found that the crack growth behavior on the back side after through-ghickness is unique and can be divided into three stages a, b and c. A retardation parameter has been used successfully to predict the growth of cracks in specimen, and in this time, retardation factor is 4.3. By using the crack propagation rule considering on retardation state and the K value proposed by the authors, the remarkable crack growth behavior and the change in crack shape can be evaluated quantitatively.

  • PDF

Fracture Mechanic's Approach on Retardation Behaviors under Overloading (과대 하중작용 시 균열성장 지연 거동에 대한 파괴역학적 정리)

  • Kang, Yong-Goo;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.13-20
    • /
    • 2012
  • In order to clarify the effect of overload on crack growth behaviors, fatigue tests for overload were carried out for round plain specimens of SM45C steel. In the experiment, typical semi-elliptical crack shape was found and further crack growth behaviors were tested. Using three types of single overload fatigue tests, Crack growth retardation phenomenon were examined. The growth rate of surface crack(da/dN) during retardation period was analyzed in terms of ${\Delta}K$ and ${\Delta}K_{eff}$. On the growth rate of surface crack analyzed by ${\Delta}K$, the dependence of overload stress levels appears. However, on the growth rate by ${\Delta}K_{eff}$ obtained by Willenborg analysis, there is a non-liner relationship between da/dN and ${\Delta}K_{eff}$ with narrow scatter band.