• 제목/요약/키워드: Fatigue Variable

검색결과 260건 처리시간 0.028초

SNS 접속형태와 이용심리에 의한 지속사용의도 영향요인 연구 (A Study on Influencing Factors of Continuous Use Intention by SNS Connection Type and User Psychology)

  • 홍희경;최정일;한경석
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.957-967
    • /
    • 2017
  • 본 연구는 SNS 이용의 중지를 원하면서도 SNS를 지속적으로 사용하게 하는 의도에 영향을 주는 요인을 이용자들의 심리와 접속형태 중심으로 접근하였다. 개념적 틀로써 확장된 기술수용모델(TAM2)과 프라이버시 계산 모델(PCM)을 사용하였으며 선행연구를 기반으로 독립변인과 매개변인을 도출하였다. 가설의 검증은 AMOS 18.0과 SPSS 18.0을 이용하였고, SNS 이용 경험이 있는 IT 계열 학생 및 일반인을 대상으로 설문지를 배포하여 결측값 및 불성실 응답을 제외한 443부를 최종 분석에 사용하였다. 본 연구를 통해 SNS 이용 의도에 대한 긍정과 부정의 심리요인이 이용자에게 공존함을 인식하고 각 요인이 SNS 지속사용의 유인요인과 저해요인으로 작용할 수 있음을 고려하여, 향후 개선된 SNS의 서비스 방안 제공 및 마케팅 전략 수립의 기틀마련에 도움이 되기를 기대한다.

Changes In Mechanical Strength of Compression HIP Screws in Relation to Design Variations - A Biomechanical Analysis

  • Moon S. J.;Lee H. S.;Jun S. C.;Jung T. G.;Ahn S. Y.;Lee H.;Lee S. J.
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권2호
    • /
    • pp.123-127
    • /
    • 2005
  • Compression Hip Screw (CHS) is one of the most widely-used prostheses for the treatment of intertrochanteric fractures because of its strong fixation capability. Fractures at the neck and screw holes are frequently noted as some of its clinical drawbacks, which warrant more in-depth biomechanical analysis on its design variables. The purpose of this study was to evaluate changes in the strength with respect to the changes in design such as the plate thickness and the number of screw holes. Both mechanical test and FEM analysis were used to systematically investigate the sensitivities of the above-mentioned design variables. For the first part of the mechanical test, CHS (n=20) were tested until failure. The CHS specimens were classified into four groups: Group Ⅰ was the control group with the neck thickness of 6-㎜ and 5 screw holes on the side plate, Group Ⅱ 6-㎜ thick and 8 holes, Group Ⅲ 7.5-㎜ thick and 5 holes, and Group Ⅳ 7.5-㎜ thick and 8 holes. Then, the fatigue test was done for each group by imparting 50% and 75% of the failure loads for one million cycles. For the FEM analysis, FE models were made for each group. Appropriate loading and boundary conditions were applied based on the failure test results. Stresses were assessed. Mechanical test results indicated that the failure strength increased dramatically by 80% with thicker plate. However, the strength remained unchanged or decreased slightly despite the increase in number of holes. These results indicated the higher sensitivity of plate thickness to the implant strength. No fatigue failures were observed which suggested the implant could withstand at least one million cycles of fatigue load regardless of the design changes. Our FEM results also supported the above results by showing a similar trend in stress as those of mechanical test. In summary, our biomechanical results were able to show that plate thickness could be a more important variable in design for reinforcing the strength of CHS than the number of screw holes.

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.

균열가지 효과를 고려한 균열 성장 지연 거동 예측 (변동하중하에서의 피로거동) (The Prediction of Crack Growth Retardation Behavior by Crack Tip Branching Effects (Fatigue Behavior in variable Loading Condition))

  • 권윤기
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.126-136
    • /
    • 1999
  • We studied on crack growth retardation in single overloading condition. Crack tip branching which as the second mechanism on crack growth retardation was examined. Crack tip branching was observed to kinked type and forked type. It was found that the branching angle range was from 25 to 53 degree. The variations of crack driving force with branching angle were calculated with finite element method The variation of {{{{ KAPPA _I}}}}, {{{{ KAPPA _II}}}} and total crack driving force(K) were examined respectively So {{{{ KAPPA _I}}}}, {{{{ KAPPA _II}}}} and K mean to mode I, II and total crack driving force. Present model(Willenborg's model) for crack growth retardation prediction was modified to take into consideration the effects of crack tip branching When we predicted retardation with modified model. it was confirmed that predicted and experimental results coincided with well each other.

  • PDF

인체계측(人體計測)에 의(依)한 표준작업역(標準作業域)의 연구(硏究) (A Study on the Standard Working Area by Somatometria)

  • 이상도;정중희
    • 대한산업공학회지
    • /
    • 제2권1호
    • /
    • pp.61-78
    • /
    • 1976
  • The purpose of this study is to establish the horizontal and vertical working area which is dependent on measuring value of workers, body in order to make easy and stable working environments, and then to design the size of machines, tools and instruments in production factory because of making the practical production conditions which is the most suitable to human characteristics. But there is necessity that we have to review numeric value of measurement periodically because the size of workers' body is variable according to periodic and social circumstances. The establishment of standard working area after measurement enable us to make the best working conditions and we can design standard working table, optimum size of all machines and tools in production activity. Therefore, we can also acknowledge the importance of studying on human engineering because human engineering is necessary to reduction of fatigue in working, saving workers from industrial accidents, fail-safe system, improvement of productivity with increase in efficiency and etc. Finally, this study informs us that numeric value of measurement is larger than that of Japan, but not than that of America and Germany. So we can establish standard working area which is the most suitable for Korean inherence after measurement of detailed parts for workers' body.

  • PDF

진동에서 생기는 동적 하중을 줄이기 위한 능동 최적 제어 (Active Optimal Control Techniques for Suppressing Dynamic Load in Vibration)

  • 김주형;김상섭
    • 한국소음진동공학회논문집
    • /
    • 제12권10호
    • /
    • pp.749-757
    • /
    • 2002
  • Excessive vibration in flexible structures is a problem encountered in many different fields, causing fatigue of structural components. Passive techniques, though sometimes limited in their capabilities, have been used in the past to attenuate vibrations. Recently active techniques have been developed to enhance vibration control performance beyond that provided by their passive counterparts. Most often, the focus of active control methods has been to suppress structure displacements. In cases where vibration results in structure failures, displacement suppression may not be the best choice of control approaches (it can, in fact, increase dynamic loads which would be even more harmful to supports) . This paper presents two optimal control methods for attenuating steady state vibrations in flexible structures. One method minimizes shaft displacements while another minimizes dynamic reaction forces. The two methods are applied to a model of a typical flexible structure system and their results are compared. It is found that displacement minimization can increase loads, while load minimization decreases loads.

Engineering criticality analysis on an offshore structure using the first- and second-order reliability method

  • Kang, Beom-Jun;Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권6호
    • /
    • pp.577-588
    • /
    • 2016
  • Due to the uncertainties related to the flaw assessment parameters, such as flaw size, fracture toughness, loading spectrum and so on, the probability concept is preferred over deterministic one in flaw assessment. In this study, efforts have been made to develop the reliability based flaw assessment procedure which combines the flaw assessment procedure of BS7910 and first-and second-order reliability methods (FORM/SORM). Both crack length and depth of semi-elliptical surface crack at weld toe were handled as random variable whose probability distribution was defined as Gaussian with certain means and standard deviations. Then the limit state functions from static rupture and fatigue perspective were estimated using FORM and SORM in joint probability space of crack depth and length. The validity of predicted limit state functions were checked by comparing it with those obtained by Monte Carlo simulation. It was confirmed that the developed methodology worked perfectly in predicting the limit state functions without time-consuming Monte Carlo simulation.

A Study on the Service Load State Behavior of Reinforced Concrete Plate Member

  • Bhang, Jee-Hwan;Kang, Won-Ho
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.55-72
    • /
    • 2000
  • This paper proposes a mechanical model to describe the load-deformation responses of the reinforced concrete plate members under service load state. An Analytical method is introduced on the basis of the rotating crack model which considers equilibrium, compatibility conditions, load-strain relationship of cracked member, and constitutive law for materials. The tension stiffening effect in reinforced concrete structures is taken into account by the average tensile stress-strain relationship from the load-strain relationship for the cracked member and the constitutive law for material. The strain compatibility is used to find out the crack direction because the crack direction is an unknown variable in the equilibrium and compatibility conditions. The proposed theory is verified by the numerous experimental data such as the crack direction, moment-steel strain relationship, moment-crack width relationship. The present paper can provide some basis for the provision of the definition of serviceability for plate structures of which reinforcements are deviated from the principal stresses, because the present code defines the serviceability by the deflection, crack control, vibration and fatigue basically for the skeletal members. The proposed theory is applicable to predict the service load state behavior of a variety of reinforced concrete plate structures such as skew slab bridges, the deck of skew girder bridges.

  • PDF

간호사 재직의도에 영향을 주는 요인: 역할갈등을 중심으로 (Factors Affecting Hospital Nurses Intention to Remain: Focusing on Role Conflict)

  • 조경숙;이은희;손행미
    • 한국간호교육학회지
    • /
    • 제23권3호
    • /
    • pp.290-299
    • /
    • 2017
  • Purpose: The purpose of this study is to investigate nurses' role conflict and intention to remain and to identify factors that may influence this intention. Methods: Data were collected from 172 nurses in a 600-plus bed hospital on nurses' intention to remain, which included 47 items and nurses' role conflict, which included 82 items from a self-reported questionnaire. Data were analyzed by descriptive statistics and stepwise multiple regression using SPSS 22.0 Results: The mean of the role conflict frequency was 2.71(${\pm}.39$) and the mean severity was 2.86 (${\pm}.47$). The most significant item among the items of intention to remain was "a nurse's job is to help people." The intention to remain employed showed a significant difference in the duration of desired working period and subjective job satisfaction. The subjective job satisfaction of nurses was the most influential variable as a factor affecting the intention to remain, followed by frequency of role conflict in nursing practice. Conclusion: These results suggest that inadequate nursing environments in nursing practice require improvement and support the idea that nurses with positive attitudes of the nursing organization and theirs leaders reduce nurses' related fatigue.

유한요소해석과 영향함수법을 이용한 압입축의 프레팅 마모해석 (Fretting Wear Simulation of Press-Fitted Shaft with Finite Element Analysis and Influence Function Method)

  • 이동형;권석진;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.54-62
    • /
    • 2008
  • In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge were compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.