• 제목/요약/키워드: Fatigue Safe Life

검색결과 72건 처리시간 0.024초

개폐에 따른 지게차 포크의 내구성에 대한 구조해석 (Structural Analysis on Durability of Forklift due to Opening and Closing Between Forks)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.199-205
    • /
    • 2013
  • Stress and deformation on forklift happened at loading, unloading or moving freight are studied by structural and fatigue analysis in this study. As model 1 as closing type between forks has lower stress and stain than model 2 at opening type, model 1 has more durability than model 2. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'SAE bracket history' with the severest change of load at model 1 and 2, maximum life is shown with Cycle. Minimum damage with 854 at model 2 becomes much higher than model 1. As the gap between forks becomes open, the damage probability becomes higher. The structural result of this study can be effectively utilized with the safe and stable design of forklift by investigating prevention and durability against its damage.

차량 현가장치의 내구성 시험에 관한 연구 (A Study on Durability Test Method of Vehicle Suspension Systems)

  • 백운경
    • 한국안전학회지
    • /
    • 제10권2호
    • /
    • pp.24-31
    • /
    • 1995
  • This paper shows the fatigue durability test method for vehicle suspension systems. Durability should be assured for the safe driving during vehicle life cycle. A computer simulation for the vehicle dynamics was used to obtain dynamic loads that were required for the fatigue durability test. Durability tests were done for an Important load-carrying component of the suspension system. Stress analyses using stresscoat and strain gages were also done for the component. This study demonstrated an effective method for the fatigue durability test.

  • PDF

확률밀도함수를 이용한 멤브레인방식 LNG탱크의 선형누적손상도 평가에 관한 연구 (A Study on the Evaluation of Linear Cumulative Damage Factor of Membrane Type LNG Tank by use of Probability Density Function)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.993-999
    • /
    • 2004
  • The estimation of fatigue life at the design stage of membrane type LNG tank is very important in order to arrive at feasible and cost effective solutions considering the total lifetime of the tank. In this study, the practical procedure of fatigue life prediction by use of cumulative damage factors based on Miner-Palmgren hypothesis and probability density function has been shown with the corner region of Gaz Transport Membrane type LNG tank being used as an example. In particular the parameters of Weibull distribution that determine the stress spectrum are discussed. The main results obtained from this study are as follows: 1. The recommended value for the shape parameter of Weibull distribution for the LNG tank is 1.1 in case of using the direct calculation method proposed in this study. 2. The calculated fatigue life is influenced by the shape parameter of Weibull distribution and stress block. The safe fatigue design can be achieved by using higher value of shape parameter and the stress blocks divided into more stress blocks.

제트엔진에서의 추진축의 피로 수명해석에 관한 융합연구 (Convergent Study on Fatigue Life Analysis of Driving Shaft in Jet Engine)

  • 이정호;조재웅
    • 한국융합학회논문지
    • /
    • 제6권6호
    • /
    • pp.279-284
    • /
    • 2015
  • 항공기의 추력으로 구동되는 추진축의 회전운동에서 발생되는 진동은 추진축의 수명에 큰 영향을 끼친다. 그리고 회전중 추진축에서 피로파괴가 발생하게 될 시에, 막대한 인명피해를 야기하게 된다. 비행환경에 따라 다양한 회전에 놓이게 되는 추진축에서 떨림이 발생한다. 따라서 이러한 피로파괴가 우려되는 추진축 부위를 본 논문에서는 해석적 연구를 통해 사전에 파악함으로서, 파손방지를 위한 그 내구성이 향상되고 근간된 안전설계를 토대로 융합기술에 접목하여 그 미적인 감각을 나타낼 수 있다.

형상 별 자동차 프런트 범퍼 가드에 대한 강도 특성 및 내구성 연구 (A Study of Strength Property and Durability on Automotive Front Bumper Guard by Configuration)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.28-33
    • /
    • 2018
  • The automotive front bumper guard is the most important part of the vehicle for protecting the life of driver when a traffic accident happens. In order to ensure safe driving, this part must possess sufficient strength and durability. This study was carried out with structural and fatigue analyses by designing front bumper guard models. After the lowest value for maximum total deformation and equivalent stress was found through structural analysis and the highest value for fatigue life was found for all three models, it was shown that the type C front bumper guard model was the most suitable for application to a real car. The strength property and durability of the optimum design were determined through this study's results.

자동차 휠의 종류별 피로 내구성 해석 (Fatigue Durability Analysis due to the Classes of Automotive Wheels)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.68-74
    • /
    • 2014
  • This study analyzes structural stress and fatigue about three types of automotive wheels. As maximum equivalent stresses at 1, 2 and 3 types become lower than the yield stress of material and deformations become minute, theses types are thought be safe on durability. Type 2 model has the most fatigue life among three kinds of types and the rest of models with fatigue lives are shown in the order of type 1 and 3. As the most fatigue frequency of type 2 model happens at the state of average stress and amplitude stress on the stress range narrower than type 1 or 3, type 2 model becomes most stable. In case of type 2 with the state near the average stress of 0 MPa and the amplitude stress of 300MPa, the possibility of maximum damage becomes 30%. This stress state can be shown as the most damage possibility. These study results can be effectively utilized with the design on automotive wheel by anticipating and investigating prevention and durability against its damage.

레일강의 샬피거동 및 피로균열 성장거동에 관한 파괴역학적 고찰 (Fracture Mechanical Study on the Charpy V-notch and Fatigue Crack Propagation 8ehavior of Rail Steels)

  • 김성훈
    • 대한토목학회논문집
    • /
    • 제14권6호
    • /
    • pp.1319-1327
    • /
    • 1994
  • 레일강에 있어서 피로균열은 레일의 파괴와 그에 따른 열차탈선의 근본적인 요인으로서 실험실시험의 분석 결과에 의한 피로거동 및 파괴특성의 정량적 평가는 피로수명 추정 및 안전조사 주기설정의 기본이 된다. 따라서 본 연구에서는 살피충격시험의 결과로부터 레일강의 샬피거동 및 파괴인성거동을 평가하고 일정진폭하중하에서 피로시험의 분석 결과로부터 피로균열성장거동에 미치는 균열의 방향성, 온도, 그리고 응력비 R의 효과를 파괴역학적 수법을 도입하여 평가하였다.

  • PDF

자전거 페달에 대한 구조 및 피로 해석 (Structural and Fatigue Analysis on Bicycle Pedal)

  • 한문식;조재웅
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.51-57
    • /
    • 2012
  • This study investigates structural and fatigue analyses at bicycle pedal. Maximum deformation at model 1 is 2 times as much as model 2 at static analysis. Models 1 and 2 have the possibility of the weakest strength at the part of contact with chain gear. Among the cases of nonuniform fatigue loads at Models 1 and 2, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^4$ MPa and the amplitude stress of 0 to $10^4$ MPa, the possibility of maximum damage becomes 4%. This stress state can be shown with 5 to 7 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The analysis result of this study can be effectively utilized with the safe design of pedal.

ASME Boiler & Pressure Vessel Code에 따른 배열회수보일러 기수분리기의 피로 평가 (Fatigue Evaluation of Steam Separators of Heat Recovery Steam Generators According to the ASME Boiler and Pressure Vessel Code)

  • 이부윤
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.150-159
    • /
    • 2018
  • The present research deals with a finite element analysis and fatigue evaluation of a steam separator of a high-pressure evaporator for the Heat Recovery Steam Generator (HRSG). The fatigue during the expected life of the HRSG was evaluated according to the ASME Boiler and Pressure Vessel Code Section VIII Division 2 (ASME Code). First, based on the eight transient operating conditions prescribed for the HRSG, temperature distribution of the steam separator was analyzed by a transient thermal analysis. Results of the thermal analysis were used as a thermal load for the structural analysis and used to determine the mean cycle temperature. Next, a structural analysis for the transient conditions was carried out with the thermal load, steam pressure, and nozzle load. The maximum stress location was found to be the riser nozzle bore, and hence fatigue was evaluated at that location, as per ASME Code. As a result, the cumulative usage factor was calculated as 0.00072 (much less than 1). In conclusion, the steam separator was found to be safe from fatigue failure during the expected life.

자전거 안장에서의 구조적 내구성 해석에 관한 연구 (Study on Structural Durability Analysis at Bicycle Saddle)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.104-112
    • /
    • 2013
  • This study investigates the structural analysis result with vibration and fatigue on 3 kinds of bicycle saddle models. When the static load applies on the upper plane of model, maximum stress becomes within the allowable stress in case of model 1. As the value of Stress or deformation becomes lower on the order of model types 1, 2 and 3, these models become more stabilized or safer at durability in this order. On the vibration analysis, model type 1 has the maximum stress or deformation more than 5 times by comparing with model type 1 or 2. Model type 1 becomes most excellent on vibration durability. As maximum displacement due to vibration happens in case of model type 3, it becomes unstabilized. But the stresses of model types 1, 2 and 3 become within the allowable stress and these models are considered to be safe. At the status of the severest fatigue load, model type 3 becomes safer than model type 1 or 2. This study result is applied with the design of safe bicycle saddle and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration and fatigue.