• 제목/요약/키워드: Fatigue J integral

검색결과 46건 처리시간 0.026초

신경회로망을 이용한 고온 저사이클 피로균열성장 모델링에 관한 연구 (A Study on High Temperature Low Cycle Fatigue Crack Growth Modelling by Neural Networks)

  • 주원식;조석수
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.2752-2759
    • /
    • 1996
  • This paper presents crack growth analysis approach on the basis of neural networks, a branch of cognitive science to high temperature low cycle fatigue that shows strong nonlinearity in material behavior. As the number of data patterns on crack growth increase, pattern classification occurs well and two point representation scheme with gradient of crack growth curve simulates crack growth rate better than one point representation scheme. Optimal number of learning data exists and excessive number of learning data increases estimated mean error with remarkable learning time J-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

Experimental and numerical analysis of fatigue behaviour for tubular K-joints

  • Shao, Yong-Bo;Cao, Zhen-Bin
    • Structural Engineering and Mechanics
    • /
    • 제19권6호
    • /
    • pp.639-652
    • /
    • 2005
  • In this paper, a full-scale K-joint specimen was tested to failure under cyclic combined axial and in-plane bending loads. In the fatigue test, the crack developments were monitored step by step using the alternating current potential drop (ACPD) technique. Using Paris' law, stress intensity factor, which is a fracture parameter to be frequently used by many designers to predict the integrity and residual life of tubular joints, can be obtained from experimental test results of the crack growth rate. Furthermore, a scheme of automatic mesh generation for a cracked K-joint is introduced, and numerical analysis of stress intensity factor for the K-joint specimen has then been carried out. In the finite element analysis, J-integral method is used to estimate the stress intensity factors along the crack front. The numerical stress intensity factor results have been validated through comparing them with the experimental results. The comparison shows that the proposed numerical model can produce reasonably accurate stress intensity factor values. The effects of different crack shapes on the stress intensity factors have also been investigated, and it has been found that semi-ellipse is suitable and accurate to be adopted in numerical analysis for the stress intensity factor. Therefore, the proposed model in this paper is reliable to be used for estimating the stress intensity factor values of cracked tubular K-joints for design purposes.

플레이트거더 지하철교량 세로보의 피로 균열에 관한 연구 (A Study on Fatigue Crack at Coped Stringers of the Plate Girder Subway-Bridge)

  • 조재병
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.713-724
    • /
    • 2004
  • 거동이 복잡한 실제 구조물의 사용하중으로 인한 피로 균열 해석 방법을 제시하기 위해 구 당산철교 플레이트교 세로보에 발생한 피로균열을 대상으로 하여 사용 기간에 따른 피로균열의 길이를 계산하였다. 계산의 편리와 컴퓨터의 계산 용량 등을 고려하여 특정 부분만 정밀하게 해석하였고, 구조해석의 오차와 열차의 운행 하중 등을 고려하기 위해 여러 보정계수를 사용하였다. 상부구조 1개 경간을 보요소로 모델링하여 열차 통과로 인한 세로보의 거동 이력을 해석하였으며, 세로보 연결부의 플랜지가 절취된 곳에 집중된 응력을 구하기 위하여 세로보 한 개를 쉘요소로 모델링하여 정밀해석을 수행하였다. 피로균열의 진행은 파괴역학적 모델을 사용하여 계산하였으며, 응력확대계수는 유한요소해석 방법으로 J-Integral를 구하여 환산한 값을 사용하였다. 가정한 초기균열의 크기와 균열 진행속도 계산식에 따라 차이는 있으나 계산된 피로균열의 길이는 현장에서 조사된 피로균열길이에 잘 부합되는 것으로 나타났다.

Zr-2.5Nb 압력관의 휘어진 CT시편으로 측정한 J 저항곡선의 정확도에 관한 연구 (A Study on Accuracy of J-Resistance Curves Measured with Curved Compact Tension Specimen of Zr-2.5Nb Pressure Tube)

  • 윤기봉;박태규;김영석
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1986-1996
    • /
    • 2003
  • Methodology based on the elastic-plastic fracture mechanics has been widely accepted in predicting the critical crack length(CCL) of pressure tubes of CANDU nuclear plants. A conservative estimate of CCL is obtained by employing the J-resistance curves measured with the specimens satisfying plane strain condition as suggested in the ASTM standard. Due to limited thickness of the pressure tubes the curved compact tension(CT) specimens taken out from tile pressure tube have been used in obtaining J-resistance curves. The curved CT specimen inevitably introduce slant fatigue crack during precracking. Hence, effect of specimen geometry and slant crack on J-resistance curve should be explored. In this study, the difference of J integral values between the standard CT specimens satisfying plane strain condition and the nonstandard curved CT with limited thickness (4.2mm) is estimated using finite element analysis. The fracture resistance curves of Zr-2.5Nb obtained previously by other authors are critically discussed. Various finite element analysis were conducted such as 2D analysis under plane stress and plane strain conditions and 3D analysis for flat CT, curved CT with straight crack and curved CT with slant crack front. J-integral values were determined by local contour integration near the crack tip, which was considered as accurate J-values. J value was also determined from the load versus load line displacement curve and the J estimation equation in the ASTM standard. Discrepancies between the two values were shown and suggestion was made for obtaining accurate J values from the load line displacement curves obtained by the curved CT specimens.

타이어 벨트 끝단의 피로수명 예측 (Fatigue Life Prediction of Tire Belt Edge)

  • 김재연;양영수;김기운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.954-957
    • /
    • 2004
  • Tire belt durability is characterized by the initiation of a crack at the belt edge region, and the propagation of the crack until the ply is separated. Experimental methods have been used to analysis of the belt durability in the cord-reinforced rubber composite tires, but it takes much cost and time to make experiments. In this paper, a finite element method to analyze the fatigue life of a crack at the belt edge of tires is presented. The fatigue life is analyzed by using a three-dimensional Finite Element Modeling. This method includes a global-local finite element analysis to provide the detail necessary to model explicitly an internal crack and use of the J-integral for energy release rate evaluation.

  • PDF

회전 중 원심력에 의한 광디스크의 피로 파손 (Static fatigue failure of the rotating optical disc)

  • 황효균;김남웅;단병주;김종만;김외열;이진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.150-155
    • /
    • 2004
  • The base material of optical disc is the amorphous polymer, polycarbonate. So crack growth on the rotating optical disc could happen by the static centrifugal force. This phenomenon is called static fatigue. Today's CD-R disc drive is being operated over 10,000 RPM. This is increasing the possibility of the disc fracture when operating. In this reason, new method to measure the static fatigue threshold quality and the way to calculate the threshold J-integral value and the safe crack length of the optical disc are studied. Finally the environmental effect to optical disc is also studied in this paper.

  • PDF

유한요소법을 이용한 CT 시편의 홀확장 잔류응력 및 응력확대계수 해석 (Analysis of the Residual Stress due to Cold Expansion and Stress Intensity Factor in CT specimen Using Finite Element Method)

  • 장재순;양원호;김철;고명훈;조명래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.603-608
    • /
    • 2001
  • Recently, cold expansion of fastener holes is commonly used in the aerospace industry to increase the fatigue endurance of airframes. Cold expansion process is used as the retardation of crack initiation in the hole. This treatment leads to an improvement of fatigue behavior due to the compressive residual stresses developed on the hole surface. The residual stress profile depends on the cold expansion ratio. In the present paper, it is shown that residual stress is redistributed due to the application of cold expansion process for CT specimen. It is further shown that residual stress increases in proportion to cold expansion ratio. It is thought that crack growth rate increases as cold expansion ratio.

  • PDF

원전 배관의 파손확률평가를 위한 P-PIE 프로그램의 개발 (Development of P-PIE Program for Evaluating Failure Probability of Pipes in Nuclear Power Plants)

  • 박재학;이재봉;최영환
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.1-8
    • /
    • 2010
  • P-PIE program is developed for evaluating failure probability of pipes in nuclear power plants based on the existing PRAISE program. In the program, crack growth due to fatigue loading and stress corrosion can be considered and the probability of fracture or leakage of pipes can be calculated. Crack growth simulation is performed based on stress intensity factor and a damage parameter and failure of a pipe is determined based on J integral or net section yielding. Using the developed program the failure probabilities of tubes in a domestic nuclear power is obtained and discussed.

SB41 강의 표면 피로균열 진전 특성에 관한 연구 (A Study on the Fatigue Crack Growth Behavior of Surface Cracks)

  • 배원호;김상태;이택순
    • 대한기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.916-923
    • /
    • 1991
  • 본 연구에서는 표면 균열이 있는 평판의 탄소성 피로하중 상태에서 성장하는 균열 형태의 변화와, 작용하는 응력의 크기에 따른 균열 개페구 특성의 변화를 연구하 였다.또, 유효 응력 확대계수 범위, .DELTA.K$_{eff}$와 J적분범위, .DELTA.J가 탄소성 응력 상태에서의 표면 피로균열 진전속도를 나타내는 역학양으로 사용되는데 따른 적합성등 을 검토하였다.

복합하중을 받는 평판에 존재하는 반타원 표면균열의 공학적 탄소성 파괴해석법 (Engineering Elastic-Plastic Fracture Analysis for Semi-Elliptical Surface Cracked Plates Under Combined Bending and Tension)

  • 심도준;김윤재;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1127-1134
    • /
    • 2002
  • The present paper provides an engineering J estimation equation for surface cracked plates under combined bending and tension. The proposed equation is based on the reference stress approach, and the most relevant normalising loads to define the reference stress for accurate J estimations are given for surface cracked plates under combined bending and tension. Comparisons with J results from extensive 3-D FE analyses, covering a wide range of crack geometry, plate geometry and loading combination, show overall good agreement not only at the deepest point but also at arbitrary points along the crack front. for pure tension, agreement between the estimated J and the FE results is excellent, even at the surface point. On the other hand, for pure bending and combined bending and tension, the estimated J values become less accurate for locations close to the surface point. Thus the results in this paper will be useful to assess short-term fracture or low cycle fatigue of surface defects in plates under combined bending and tension.