• 제목/요약/키워드: Fatigue Design

검색결과 1,873건 처리시간 0.043초

파로설계에 관한 소고 (A Study on the Design against Metal Fatigue)

  • 이순복
    • 한국기계연구소 소보
    • /
    • 제4권1호
    • /
    • pp.19-26
    • /
    • 1981
  • Fatigue, the birth and growth of cracks in metal parts subjected to repeated loading, has been a problem plaguing engineers since the Industrial Revolution and the advent of rotating or reciprocating machinery. Designing against metal fatigue was studied briefly in several aspects. Examples of fatigue failures were shown. Fatigue was classified by loading: uniaxial Fatigue, multiaxial fatigue, cumulative fatigue da¬mage. Fatigue design criteria were discussed: Infinite-Life Design, Safe-Life Design, Fail-Safe Design, and Damage Tolerant Design. Mitigation of notch effects by design, improvement of fatigue strength of metal parts by residual stress and surface finishing were discussed. Relative fatigue beha¬vior was studied under various environmantal conditions. Especially the effects of corrosion, temperature, fretting, and irradiation were covered.

  • PDF

가압기 밀림관 환경피로평가를 위한 피로보정계수 적용에 관한 연구 (A Study on Application of Fatigue Correction Factor for Environmental Fatigue Evaluation of Pressurizer Surge Line)

  • 양준석;박치용;강선예
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1151-1157
    • /
    • 2009
  • Nuclear power plants applying for the continued operation over design life are required to address the effects of reactor water environment in fatigue design requirement of the ASME Code. Reactor water environmental effects are generally evaluated by calculating fatigue correction factors on fatigue usage. This paper describes the application for pressurizer surge line of environmental fatigue correction factors and the strain rate impact in the application. From this paper, the environmental fatigue correction factors resulted from the assumption of a step change in temperature are especially compared with those calculated from the data measured during plant startup. As a conclusion of this paper, the design transient conditions applied to the fatigue design may be conservative in case of the environmental fatigue evaluation.

크랭크스로 단조강의 피로수명의 확률분포 추정 (Estimation of Probability Distribution of Fatigue Lives in Crank Throw Forged Steel)

  • 김선진;안석환
    • 동력기계공학회지
    • /
    • 제20권3호
    • /
    • pp.29-35
    • /
    • 2016
  • Because of the severe service environment of the large marine vessel, the fatigue strength and its evaluation play an important role in design and maintenance of marine crankshaft. The aim of this work is to investigate the probability distribution of fatigue lives in crank throw forged steel and to develop the methodology for estimation of the probabilistic design fatigue strength. Detailed studies were performed on the constant amplitude axial loading fatigue test. The experiments were controlled by stress ratio of -1 and 15Hz frequency for each stress level. The considerable variability of fatigue life was observed in each stress level under rigidly controlled constant fatigue testing conditions. The fatigue life of crank throw forged steel was well followed the log-normal and Weibull distribution. In addition, it can be used for the estimation of probabilistic design fatigue strength by using the proposed methodology.

강도로교의 피로설계하중에 관한 연구 (The Study on Fatigue Design Loads of Steel Highway Bridges)

  • 김상효;이창용
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.159-169
    • /
    • 1997
  • 최근 중화물 차량의 적재율 증가와 교통량의 증가 등으로 인해 강도로교에서는 반복하중에 의한 피로손상이 많이 발생하고 있으며 이러한 손상은 교량의 안전성에 심각한 영향을 미치고 있다. 따라서 사용기간 동안에 발생하는 피로손상을 합리적으로 반영할 수 있는 피로설계하중을 결정하는 것은 매우 중요하다. 본 연구에서는 먼저 미국 AASHTO의 LRFD 피로설계방법을 고찰하였으며 그 결과 교폭에 관계없이 1대의 피로설계트럭을 재하하여 설계하는 것은 일정한 안전수준을 확보하지 못하는 것으로 분석되었다. 따라서, 교폭에 따라 설계하중 재하방법을 다르게 하는 것이 보다 일관성 있는 안전수준을 가지는 것으로 나타났으며 본 연구에서는 다양한 교량구조형식과 통행특성에 따라 발생하는 피로손상을 합리적으로 반영할 수 있는 피로설계하중의 재하방법과 수준 및 형식을 제시하였다.

  • PDF

원전 운전환경을 고려한 주기기 피로 건전성 상세평가 절차개발 및 적용 (Development and Application of Detailed Procedure to Evaluate Fatigue Integrity for Major Components Considering Operating Conditions in the Nuclear Power Plant)

  • 김병섭;김태순
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.20-25
    • /
    • 2006
  • In the design of class 1 components to apply ASME code section III NB, a fatigue is considered as one of the important failure mechanisms. Fatigue analysis procedure and standard fatigue design curve(S-N curve) is suggested in ASME code, which had to be performed to meet the integrity of components at the design step. As the plant life extension for operating power plants and the long-lived plant design, however, are being progressed, the fact which the existing ASME fatigue design curve can not consider fatigue effects sufficiently comes to the fore. To find the technical solution for these problems, a number of researches and discussion are continued up to now. In this study, the detailed fatigue analyses using the 3 dimensional modeling for the fatigue-weakened components were performed to develop the optimized fatigue analysis procedure and their results are compared with other reference solutions.

불규칙 진동하중을 받는 쇽 타워의 피로수명을 고려한 점용접 위치 최적설계 (A Study on Optimal Spot-weld Layout Design of the Shock Tower Structure Considering Fatigue Life under Random Vibration Load)

  • 이용훈;이승윤;배복수;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.538-543
    • /
    • 2011
  • In this paper, optimal spot weld layout design of the shock tower structure is performed for increasing fatigue life of spot weld and fatigue life of shock tower simultaneously. To predict the fatigue life, linear static analysis is conducted then fatigue analysis is performed by applying random vibration load. To optimize the spot weld layout, design variables that have an effect on spot weld fatigue life are selected. Based on the DOE table, spot weld fatigue analysis is conducted. Finally, response surface model is made from fatigue analysis results and optimized spot weld layout model which increases fatigue life of sport weld and fatigue life of shock tower is determined.

  • PDF

불규칙 진동하중을 받는 쇽 타워의 피로수명을 고려한 점용접 위치 최적설계 (A Study on an Optimal Spot-weld Layout Design for a Shock Tower Structure Considering the Fatigue Life under Random Vibration Loads)

  • 이용훈;이승윤;배복수;이상범;임홍재
    • 한국소음진동공학회논문집
    • /
    • 제21권9호
    • /
    • pp.798-804
    • /
    • 2011
  • In this paper, optimal spot weld layout design for a shock tower structure is presented. This design increases the fatigue life of the spot-welds thereby increasing the fatigue life of the shock tower itself. In order to predict the fatigue life, a quasi-static analysis has been conducted then a fatigue analysis was performed through the application of random vibration loads. In order to optimize the spot weld layout, the design variables that have an effect on the spot weld fatigue life were determined. A spot weld fatigue analysis was then conducted based on the experiment design. Finally, a response surface model was made using the fatigue analysis results and an optimized spot weld layout model, one that increases the fatigue life of the spot welds and thereby the fatigue life of the shock tower, was developed.

실험계획법을 적용한 Lower Control Arm의 피로수명 형상 최적설계 (Shape Optimization for Improving Fatigue Life of a Lower Control Arm Using the Experimental Design)

  • 김민수;이창욱;손성효;임홍재;허승진
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.161-166
    • /
    • 2003
  • In order to improve the fatigue lift of a lower control arm in the vehicle suspension, a new shape optimization procedure is presented. In this approach, the shape control point concept is introduced to reduce the numbers of shape design variables. Also, the two-level orthogonal way is employed to evaluate the design sensitivity of fatigue life with respect to those shape design variables, because the analytical design sensitivity information is not directly supplied from the commercial CAE softwares. In this approach, only the six design variables are used to approximate the shape of lower control arm. Then, performed are only 10 fatigue life analyses including the baseline design, 8 DOE models and the final design. The final design, the best combination obtained from the sensitivity information, can maximize the fatigue lift nearly two times as that of the baseline design, while reducing the 12 percentage of weight than it.

틸트 로터형 무인항공기의 손상허용 설계 (Damage Tolerant Design for the Tilt Rotor UAV)

  • 박영철;임종빈;박정선
    • 항공우주시스템공학회지
    • /
    • 제1권2호
    • /
    • pp.27-36
    • /
    • 2007
  • The Damage Tolerant Design is developed to help alleviate structural failure and cracking problems in aerospace structures. Recently, the Damage Tolerant Design is required and recommended for most of aircraft design. In this paper, the damage tolerant design is applied to tilt rotor UAV. First of all, the fatigue load spectrum for the tilt rotor UAV is developed and fatigue analysis is performed for the flaperon joint which has FCL (fatigue critical location). Tilt rotor UAV has two modes: helicopter mode when UAV is taking off and landing; fixed wing mode when the tilt rotor UAV is cruising. To make fatigue load spectrum, FELIX is used for helicopter mode. TWIST is used for fixed wing mode. Fatigue analysis of flaperon joint is performed using fatigue load spectrum. E-N curve approach is used for picking crack initiation point. The LEFM(Linear Elastic Fracture Method) is considered for analyzing crack growth or propagation. Finally, including the crack initiation and propagation, the fatigue life is evaluated. Therefore the Damage Tolerant Design can be done.

  • PDF

강재 트러스교의 해석에 의한 피로설계기준 비교 및 검토 (Comparison and Review of Fatigue Design Criteria by the Structural Analysis of Steel Truss Bridges)

  • 김상석;정희영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.241-249
    • /
    • 2003
  • 강교의 구조적 거동은 강도 및 사용성이 충족되고, 피로안전성이 확보될 때 공용수명을 충분히 확신할 수 있다. 그러나, 현재 교량의 피로에 관한 연구들은 상당히 부족하여 이 분야에 대한 지속적인 연구가 절실히 요구된다. 본 연구는 강교의 장기적인 피로안전성을 확보하기 위해서 실무에 적합한 피로설계지침의 방향을 제시함을 목표로 수행되었다. 연속된 강재 트러스교에 실교통량의 누적빈도수를 적용시켜 분석한 결과, 국내의 피로설계규정은 응력범위와 피로강도가 국외의 주요 설계기준에 비하여 과대평가 되는 것으로 나타난다. 따라서, 향후 국내의 피로설계지침에서는 피로설계조항들이 피로설계에 합리적으로 규정되는 것이 필요하다.