• Title/Summary/Keyword: Fatigue Curve

Search Result 475, Processing Time 0.025 seconds

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • 김동현;황운봉;박현철;박위상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1647-1650
    • /
    • 2003
  • The Objective of this work was to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that was asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSFIP elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was 16${\times}$8 array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue lift curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75(1.875kN) load level. SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • 김동현;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.108-111
    • /
    • 2003
  • The Objective of this work was to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that was asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSFIP elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16\;{\times}\;8$ array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75(1.875kN) load level. SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

A Statistical Analysis on Fatigue Life Distribution in Spheroidal Graphite Cast Iron (구상흑연주철의 피로수명분포에 대한 통계적 해석)

  • Jang, Seong-Su;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2353-2360
    • /
    • 2000
  • Statistical fatigue properties of metallic materials are increasingly required for reliability design purpose. In this study, static and fatigue tests were conducted and the normal, log-normal, two -parameter Weibull distributions at the 5% significance level are compared using the Kolmogorov-Smirnov goodness-of-fit test. Parameter estimation were compared with experimental results using the maximum likelihood method and least square method. It is found that two-parameter Weibull distribution and maximum likelihood method provide a good fit for static and fatigue life data. Therefore, it is applicable to the static and fatigue life analysis of the spheroidal graphite cast iron. The P-S-N curves were evaluated using log-normal distribution, which showed fatigue life behavior very well.

Study on fatigue experiment for transverse butt welds under 2G and 3G weld positions

  • Kang, Sung-Wook;Park, Yong-Man;Jang, Beom-Seon;Jeon, Yu-Chul;Kim, Seong-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.833-847
    • /
    • 2015
  • Although the transverse butt weld method with ceramic backing strip has been widely used in various industrial fields for its fabricational convenience, it is rarely used in offshore industries since the fatigue strength of the weld joint has not been proved sufficiently. This study conducted fatigue tests for series of butt weld specimens with horizontal (2G) and vertical (3G) welding positions in order to verify the fatigue strength compared to S-N curve by DNV (Det Norske Veritas), IIW (International Institute of Welding) and Eurocode 3. The difference of the 2G specimens and the 3G specimens are investigated in terms of angular distortion and the effect on the fatigue strength are analyzed.

Fatigue and Damage Tolerance Evaluation of Composite Helicopter Rotor Blades (복합재 헬리콥터 로터 블레이드의 피로 및 손상허용 평가 방안)

  • Kee, Young-Jung;Paek, Seung Kil
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.41-46
    • /
    • 2014
  • Fatigue evaluations for the rotor blades of commercial or military rotorcraft have been carried out using the safe life concept since 1950s. Particularly, in the case of a rotor blade made of a composite material, a highly reliable fatigue life could be predicted by evaluation the cumulative damage using combination of fatigue life curve and load spectrum. However, there is a limit in adequately evaluating the strength reducing phenomena caused by damages or defects generated during the manufacturing process or impact damage induced by operational usages, using only the safe life concept. In this study, the fatigue evaluation process based on the damage tolerance concept is described and illustrated by means of successful application to substantiate the retirement time of composite rotor blades.

FATIGUE ANALYSIS OF A REACTOR PRESSURE VESSEL FOR SMART

  • Jhung, Myung-Jo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.683-688
    • /
    • 2012
  • The structural integrity of mechanical components during several transients should be assured in the design stage. This requires a fatigue analysis including thermal and stress analyses. As an example, this study performs a fatigue analysis of the reactor pressure vessel of SMART during arbitrary transients. Using heat transfer coefficients determined based on the operating environments, a transient thermal analysis is performed and the results are applied to a finite element model along with the pressure to calculate the stresses. The total stress intensity range and cumulative fatigue usage factor are investigated to determine the adequacy of the design.

Shear-Fatigue Behavior of High-Strength Reinforced Concrete Beams under Repeated Loading (반복하중을 받는 고강도 철근콘크리트 보의 전단피로 거동)

  • 곽계환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.92-103
    • /
    • 1999
  • Recently structural damage has been frequently observed in reinforced concrete brdiges due to repeated loads such as vehicular traffic an due to continual overloads by heavy duty trucks. Therefore, the purpose of this experimental stduy is to investigate the damage mechanism due to fatigue behavior of high-strength reinforced concrete beams under repeated loads. From the test results, the relation of cycle loading to deflection is on the mid-span , the crack growth and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results , high-strength reinforced concrete beams failed to 57 ∼66 percent of the static ultimate strength . Fatigue strength aobut two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

  • PDF

Fatigue Strength Assessment of the Cruciform Fillet Welded Joint Considering Stress Concentration at Weld Toe (응력집중을 고려한 십자형 필렛 용접재의 피로강도 평가)

  • Kim D. J.;Seck C. S.;Koo J. M.;Park J. S.;Seo J. W.;Goo B. C.
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.222-227
    • /
    • 2004
  • Under cyclic loading, the fatigue failures of welded joints occur at weld toes which induce stress concentration by weld shape. So we need to obtain the peak stress and the S-N curve to assess the fatigue strength of welded joints. However the measurement of peak stress is of high uncertainty and low reproducibility, so we use nominal stress instead in fatigue tests of welded joints. In this study, fatigue tests to obtain S-N curves and FE analyses to obtain stress concentration factors were conducted for the two types of cruciform fillet welded joints, that is, load-carrying and non load-carrying types. Then we changed the obtained S-N curves to that based on peak stress using the hot-spot stress concept. From the analyses of the S-N curves obtained, we have concluded that there is a need to develop a new method to evaluate the fatigue life.

  • PDF

Fatigue Crack Growth Behavior of Short fiber/Particle Hybrid Metal Matrix Composites (단섬유/입자 혼합 금속복합재료의 피로균열진전 거동)

  • Oh K.H.;Jang J. H.;Han K. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.219-222
    • /
    • 2004
  • The effects of short fiber and particle hybrid reinforcement on fatigue crack propagation behaviors in aluminum matrix composites have been investigated. Single and hybrid reinforced 6061 aluminum containing same 20 $Al_2O_3\;volume\%$ with four different constituent ratios of short fibers and particles were prepared by squeeze casting method and tested to check the near-threshold and stable crack growth behavior. The fatigue threshold of the composites increased with portion of particle contents and showed the improved crack resistance especially in low stress intensity range. Addition of particle instead of short fiber also increased fracture toughness due to increase of inter-reinforcement distance. These increase in both fatigue threshold and fracture toughness eventually affected the fatigue crack growth behavior such that the crack growth curve shift low to high stress intensity factor value. Overall experimental results were shown that particle reinforcement was enhanced the fatigue crack resistance over the whole stress intensity factor range.

  • PDF

Evaluation of Pulley Durability Considering the Variation of the Fatigue Strength (피로강도 변동성을 고려한 Pulley의 내구성 평가)

  • Shim, Hee-Jin;Kim, Chul-Su;Oh, Won-Chul;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.394-399
    • /
    • 2004
  • In order to secure the safety of power steering system, it is necessary to perform the strength and the fatigue analysis of pulley in this paper. The applied stress distribution of the pulley subject to combined loads condition was obtained using finite element analysis. Based on these results, the fatigue life of the pulley with the variation of the fatigue strength was evaluated using durability analysis simulator. The optimal hole size to improved the safety of the pulley was investigated using parametric study. Moreover, the predicted fatigue life cycle with the simulator was verified by experimental tests.

  • PDF