• Title/Summary/Keyword: Fatigue Crack Growth Threshold

Search Result 70, Processing Time 0.022 seconds

The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/60 Pressure Vessel Steel at Low Temperature (저온 압력용기용 SA516/60강의 피로균열 진전 속도에 미치는 응력비의 영향)

  • 박경동;하경준;박상오
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.80-87
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C, -30^{\circ}C, -60^{\circ}C, -80^{\circ}C, -100^{\circ}C$ and -l2$0^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ΔK was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ΔK. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

The Development Methods of Fatigue Strength Improvement for the Marine Structural Steel (해양구조용강의 피로강도향상 공법개발)

  • Park, Keyoung-Dong;Jung, Jae-Wook
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.106-111
    • /
    • 2003
  • This study made an experiment On fatigue crack propagation da/dn, stress intensity factor range ${\Delta}K$ respectively in room temperature and in low temperature. And we got the following characteristics from fatigue crack growth test carried Out in the environment of room temperature and law temperature at $25^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, and $-100^{\circ}C$ in the range of stress ratio of 0.3 by means of opening made displacement. The threshold stress intensity factor range ${\Delta}Kth$ in the early stage of fatigue crack growth (Mode I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Made II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at law temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

An Experimental Equation on the Fatigue Crack Growth Rate Behavior (피로 균열 전파 거동에 대한 실험식)

  • Kim, Sang-Chul;Kang, Dong-Myeong;Woo, Chang-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.27-35
    • /
    • 1991
  • We propose the crack growth rate equation which applied over three regions (threshold region, stable region, unstable region) of fatigue crack propagation. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.05, R=0.2 and R=0.4. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. The fatigue crack growth rate equation is given by $da/dN={\beta} (1-R)^{\delta}\({\DELTA}K-{\DELTA}K_t)^{\alpha} / (K_{cf}-K_{max})$${\alpha}, {\beta}$ , and ${\delta}$ are constants, and ${\Delta}K_t$ is stress intensity factor range at low ${\Delta}K$ region. The constants are obtained from nonlinear least square method. $K_{ef}$is critical fatigue stress intensity factor. The relation between half crack length and number of cycles obtained by integrating the crack growth rate equation is in agreement with the experimental data. It is also experimented with constant maximum stress and decreasing stress ratios, and the fatigue growth rate of each material is in accord with the proposed equation.

  • PDF

The Effect of Temperature on Fatigue Fracture in Pressure Vessel Steel at Low Temperature (저온 압력용기용 강의 피로파괴에 미치는 온도의 영향)

  • Park, Keyung-Dong;Ha, Keyung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.359-365
    • /
    • 2002
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C,\;-30^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C,\;-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to tile extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

A Study on the Shot Peening on the Low Temperature Fatigue Crack Propagation (쇼트피이닝 가공된 스프링강의 저온 피로균열진전 평가)

  • 박경동;정찬기;하경준;박상오;손명군;노영석
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.282-286
    • /
    • 2001
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, low temperature and high temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room, low temperature and high temperature at $25^{\circ}C$,$-30^{\circ}C$,$-50^{\circ}C$,$-70^{\circ}C$ and $-100^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range $\Delta K_{th}$ in the early stage of fatigue crack growth (Region I ) and stress intensity factor range $\Delta K$ in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

An Investigation on the Shot Peening on the Low.High Temperature Fatigue Crack Propagation (쇼트피이닝 가공된 스프링강의 저.고온 피로균열진전 평가)

  • 박경동;정찬기
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-70
    • /
    • 2001
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, low temperature and high temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room, low temperature and high temperature at $25^{\circ}C$, -3$0^{\circ}C$, -5$0^{\circ}C$, -7$0^{\circ}C$, -10$0^{\circ}C$ and 5$0^{\circ}C$, 10$0^{\circ}C$ , 15$0^{\circ}C$, 18$0^{\circ}C$ and in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range $\DeltaK_{th}$ in the early stage of fatigue crack growth (Region I ) and stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles (차량용 스프링강의 피로수명에 미치는 압축잔류응력의 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.281-287
    • /
    • 2002
  • Nowadays, many components used in machinery industry is required lightness and high strength. Therefore, the effects of compressive residual stress by shot-peening which is method to improve fatigue lift of spring steel (JISG SUP-9), which used in suspension of automobile, on fatigue crack growth characteristics was investigated with considering fracture mechanics. So, we can obtain followings 1. The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

  • PDF

The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles (차량용 스프링강의 피로균열진전에 미치는 압축잔류응력의 영향)

  • 박경동;하경준;박형동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.82-90
    • /
    • 2003
  • Nowadays, many components used in machinery industry is required lightness and high strength. The shot-peening method is used in order to improve the fatigue life of spring steel(JIS G SUP-9) which is used in suspension of automobile. The compressive residual is induced in this shot-peening process. This paper investigated the effect of the residual compressive stress on the fatigue crack growth characteristics. Main results are summarized as follows. 1. The fatigue crack growth rate on stage II is conspicuous with the level of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, it does not improve the fatigue life comparing when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

The Effect of Compressive Residual Stress according to Corrosion Fatigue Life of Automobile Suspension Material (자동차 현가장치재의 부식피로수명에 따른 압축잔류응력의 영향)

  • Ki, Woo-Tae;Park, Sung-Mo;Moon, Kwang-Seok;Park, Kyeong-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • A study of new materials that are light-weight, high in strength has become vital to the machinery of auto industries. But then, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And Influence of corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3$+3.5%HF, $6%FeCl_3$. The immersion period was performed for 365days. The compressive residual stress was imposed on the surface according to each shot velocity based on shot peening, which is the method of improving fatigue life and strength. Fatigue life shows more improvement in the shot peened material than in the un peened material in corrosion conditions. The threshold stress intensity factor range was decreased in corrosion environments over ambient. Compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation. The fatigue crack growth rate of the Shot-peened material was lower than that of the un peened material. Also m, fatigue crack growth exponent and number of cycle of the shot peened material was higher than that of the un peened material. That is concluded from effect of da/dN.