• Title/Summary/Keyword: Fatigue Crack Growth Exponent

Search Result 42, Processing Time 0.027 seconds

A Study on Fatigue Crack Growth Model Considering High Mean Loading Effects Based on Structural Stress (고평균하중을 고려한 구조응력 기반의 피로균열성장 모델에 관한 연구)

  • Kim, Jong-Sung;Kim, Cheol;Jin, Tae-Eun;Dong, P.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.220-225
    • /
    • 2004
  • The mesh-insensitive structural stress procedure by Dong is modified to apply to the welded joints with local thickness variation and inignorable shear/normal stresses along local discontinuity surface. In order to make use of the structural stress based K solution for fatigue correlation of welded joints, a proper crack growth model needs to be developed. There exist some significant discrepancies in inferring the slope or crack growth exponent in the conventional Paris law regime. Two-stage crack growth model was not considered since its applications are focused upon the fatigue behavior in welded joints in which the load ratio effects are considered negligible. In this paper, a two-stage crack growth law considering high mean loading is proposed and proven to be effective in unifying the so-called anomalous short crack growth data.

  • PDF

海水環境에서 鋼 熔接部의 環境强度評價에 關한 硏究 II

  • 나의균;임재규;조규종;정세희
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 1989
  • The purpose of this study is to investigate the corrosion fatigue crack growth of PWTHT specimens(SS41, SM53B) which are the compact tension ones extracted from the muti-passed weldment and weld block. The corrosion fatigue test was done at the cyclic stress frequency of 3Hz in 3.5% NaCl solution. The results are as follows. 1. Corrosion fatigue crack growth of as-weld was slower than that of base metal. 2. In the low .DELTA.K region, the effect of corrosion environment on crack growth was obvious. However, the corrosion effect decreased with the .DELTA.K slowly. 3. The behaviour of fatigue and corrosion fatigue crack growth depended on the material, heat treatment as well as experimental conditions. 4. Corrosion fatigue crack growth of PWHT specimens(SS41, SM53B) subjected to 1/4hr, was increased compared with that of as-weld. 5. There was a tendency that the exponent value(m) obtained in 3.5% NaCl solution was decreased in comparison with that in air, and the material constant(C)was increased for Paris equation, da/dN=C((.DELTA.K))$^{m}$ , compared with that in air considerably.

  • PDF

A Study of Stress Ratio Influence on the Fatigue Crack Growth Characteristics of Pressure Vessel Steel at Low Temperature (압력용기용 강의 응력비에 따른 저온 피로균열 진전특성에 관한 연구)

  • 박경동;하경준;박형동
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.100-106
    • /
    • 2001
  • In this study, CT specimens were prepared from Pressure Vessel Steel which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -10$0^{\circ}C$ and -12$0^{\circ}C$ and in the range of stress ratio of 0.05 and 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\Delta}K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) was increased in proportion to descent temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN $-{\Delta}K$ in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate da/dN in proportion to descending temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

A Study on the Fatigue Crack Growth threshold Characteristic for Steel of Pressure Vessel at Low Temperature (압력용기용강의 저온피로 크랙전락 하한계 특성에 관한 연구)

  • 박경동;하경준
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.224-227
    • /
    • 2001
  • In this study, CT specimens were prepared hem ASTM SA516 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -l$0^{\circ}C$ and -l2$0^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range $\Delta K_{th}$ in the early stage of fatigue crack growth ( Region I ) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN - $\Delta$K in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region H and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

A Study of Stress ratio Influence on the Fatigue Crack Growth of SA516 Steel at Low Temperature (SA516 강의 응력비에 따른 저온피로크랙 전파특성에 관한 연구)

  • 박경동;하경준
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.320-325
    • /
    • 2001
  • In this study, CT specimen were prepared from Pressure Vessel Steel which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -10$0^{\circ}C$ and -12$0^{\circ}C$ and in the range of stress ratio of 0.05 and 0.3 by means of opening mode displacement. At the constant street ratio, the threshold stress intensity factor range ΔK$_{th}$ in the early stage of fatigue crack growth(Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth(Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm do/dN -ΔK in RegionII, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate do/dN is rapid in proportion to descending temperature in Region IIand the cryogenic-brittleness greatly affect a material with decreasing temperature.e.greatly affect a material with decreasing temperature.

  • PDF

The Effect of Compressive Residual Stress on Computer Corrosion Fatigue Crack of SAE 5155 (SAE 5155강의 컴퓨터부식피로 균열에 미치는 압축잔류응력의 영향)

  • Park, Sung-Mo;Moon, Kwang-Seok;Park, Kyung-Dong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.34-40
    • /
    • 2007
  • Antifatigue failure technology take an important part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel and improving the fatigue strength on surface. Therefore, this paper the effect of compressive residual stress and corrosion of spring steel(SAE 5155)by shot-peening on fatigue crack growth characteristics in stress ratio(R=0.05)was investigated with considering fracture mechanics. By using the methods mentioned above, We arrived at the following conclusions. The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material. And in stage I, ${\Delta}Kth$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material was higher than that of the un-peening material. That is concluded from effect of da/dN. Finally fracture of shot-peening material and un-peening material was identified and discussed in this study.

  • PDF

A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature (압력용기용 강의 저온 피로 크랙 하한계 특성에 관한 연구(I))

  • Park, K.D.;Ro, T.Y.;Kim, Y.T.;Kim, H.J.;Oh, M.S.;Lee, K.L.;Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 2000
  • In this study, CT specimens were prepared from ASTM SA516 Gr. 70 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C\;and\;-100^{\circ}C$ and in the range of stress ratio of 0.05 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\Delta}K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm $d{\alpha}/dN\;-{\Delta}K$ in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate $d{\alpha}/dN$ is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

An Effect of Shot Velocity of Shot-peening on A Property of Growth Behavior of Fatigue Crack for Spring Steel (스프링강의 피로크랙진전 특성에 미치는 쇼트피닝 투사속도의 영향)

  • Park, Kyoung-Dong;No, Young-Sok
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.341-346
    • /
    • 2002
  • In this study, an effect that compressive residual stress formed by shot-peening the surface of spring steel(JISG SUP-9) at each shot velocity(1800, 2200, 2600, 3000rpm) on the fatigue crack growth property and threshold stress intensity factor, ${\Delta}K_{th}$, was examined. Followings are the result (1) Compressive residual stress on surface of specimen was determined at each -601 MPa(1800rpm), -638 MPa(2200rpm), -587 MPa (2600rpm), -550 MPa(3000rpm) by shot velocity of shot peening and threshold stress intensity factor, ${\Delta}K_{th}$, fatigue crack growth rate, da/dN, on fatigue crack growth is obstructed by the compressive residual stress was determined at each $5.619\;MPa\sqrt{m}$(Un-peening), $8.319\;MPa\sqrt{m}$(1800rpm), $8.797\;MPa\sqrt{m}$(2200rpm), $7.835\;MPa\sqrt{m}$(2600rpm), $7.352\;MPa\sqrt{m}$(3000rpm) (2) Existing compressive residual stress by effect of shot velocity of shot-peening on relation of crack length. a, and number of cycle, N, was 2 times progressed in case of 2200rpm than specimen of Un-peening on fatigue life. And fatigue life was 1.6 times progressed incase of 3000rpm by Over peening. (3) Fatigue life of Material on Paris' law, $da/dN=C({\Delta}K)^m$, that effect of material constant, C, and fatigue crack growth exponent, m, was influenced by effect of. C and m.

  • PDF

The Effect of Shot peening for Corrosion Fatigue Characteristics of Spring Steel Using as Suspension Material (현가장치재 스프링강의 부식피로특성에 미치는 쇼트피닝 가공효과)

  • Park, Kyeong-Dong;Lee, Ju-Yeong;Ki, Woo-Tae;Shin, Yeong-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.62-70
    • /
    • 2007
  • The development of new materials that are light-weight, yet high in strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. The fatigue crack growth rate of the Shot-peened material was lower than that of the Un-peened material. And in stage I, threshold stress intensity factor of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. And Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF

Stress Modeling for Cyclic Fatigue Life Prediction of Alumina Ceramics (알루미나 세라믹스의 반복 피로 수명 예측을 위한 응력 모델)

  • 이홍림;박성은;한봉석
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1141-1146
    • /
    • 1994
  • Cyclic fatigue experiment was carried out to predict the life time of alumina ceramics. Four kinds of model were suggested to obtain the adequate representative static stress corresponding to the cyclic stress applied to the alumina specimens. Arithmetic mean stress model gives 21.81 of the crack growth exponent, integrated stress model gives 22.15, maximum stress model gives 24.57, and equivalent static stress model gives 24.43. It is considered that the equivalent static stress model is the most reasonable and gives the best adequate crack growth exponents value.

  • PDF