• 제목/요약/키워드: Fatigue Crack Growth Exponent

검색결과 42건 처리시간 0.024초

피로균열성장의 유한요소 시뮬레이션: Paris 법칙의 지수 m의 결정 (Finite Element Simulation of Fatigue Crack Growth: Determination of Exponent m in Paris Law)

  • 주석재;유총호
    • 대한기계학회논문집A
    • /
    • 제36권7호
    • /
    • pp.713-721
    • /
    • 2012
  • 피로균열성장을 유한요소 시뮬레이션하였다. 인장시험으로 얻는 기계적 성질만을 사용하여 피로균열성장거동을 예측하려고 하였다. 유한요소해석 결과 균열선단 부근 절점의 변위의 변화를 살펴 임계균열개구변위를 결정하였다. 균열선단 절점을 분리하여 균열성장을 시뮬레이션하였다. Paris 법칙의 지수를 결정하여 이미 발표된 값과 비교하였다. 균열닫힘을 고려한 유효 응력확대계수에 관하여 그렸을 때 더 일관성이 있는 결과를 얻었다.

가공경화지수가 피로균열 지연거동에 끼치는 영향 (Effects of Strain Hardening Exponents on the Retardation of Fatigue Crack Propagation)

  • 김상철;강동명
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1193-1199
    • /
    • 1990
  • 본 연구에서는 가공경화지수 (n)가 서로 다른 몇가지 재료를 선택하고 과대하 중의 비 (%PL)를 달리하는 단일 과대하중 피로 시험을 행하여 재료의 가공경화지수가 피로 균열 진파의 지연거동에 미치는 영향과 아울러 균열닫힘현상과의 관계를 구명하였다.

Mg-Al-Zn 합금의 Paris-Erdogan 법칙에 따른 피로거동 파라미터의 확률론적 특성 (Probabilistic Characteristics of Fatigue Behavior Parameter of Paris-Erdogan Law in Mg-Al-Zn Alloy)

  • 최선순
    • 대한기계학회논문집A
    • /
    • 제35권4호
    • /
    • pp.375-381
    • /
    • 2011
  • 본 연구의 주목적은 마그네슘합금의 피로균열성장거동을 지배하는 파라미터들의 확률론적 특성을 규명하는 것이다. 피로균열전파실험은 AZ31 마그네슘합금의 CT 시편을 이용하여 통계적으로 수행하였으며, 시편두께, 하중비, 최대하중 등의 여러 가지 실험조건으로 실온에서 진행하였다. 이 실험을 통하여 획득한 통계적 피로 데이터를 이용하여 피로거동 파라미터의 확률적 변동성 해석과 함께 확률분포 적합성을 고찰하였다. 균열성장속도계수는 확률적으로 매우 큰 변동성을 나타내는 파라미터로 밝혀졌으며, 반면에 균열성장속도지수는 매우 작은 변동성을 나타냄으로써 재료상수로 볼 수 있을 것이다. 피로거동 파라미터인 균열성장속도계수와 균열성장속도지수에 가장 적합한 확률분포는 3-파라미터 Weibull 분포이며, 2-파라미터 Weibull 분포는 균열성장속도계수의 경우에만 양호한 적합성을 나타낸다는 것을 규명하였다.

현가장치재의 피로수명향상 공법개발에 관한 연구 (A Study of Development Methods of Fatigue Life Improvement for the Suspension Material)

  • 박경동;정찬기
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

일정진폭하중하의 피로균열전파의 통계적 특성 (A Statistical Analysis of Fatigue Crack Growth under Constant-Amplitude Loads)

  • 정현철;임영규;김선진
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.104-109
    • /
    • 2002
  • In this paper, a statistical analysis of fatigue crack growth behavior under constant amplitude loads has been carried out. Fatigue crack growth tests were conducted on sixteen pre-cracked compact tension (CT) specimens of the pressure vessel (SPV50) steel in controlled identical load and environmental conditions. The assessment of the statistical distribution of fatigue crack growth experimental data obtained from SPV50 steel was studied and also the correlation of the parameter C and m in the Paris-Erdogan law was discussed. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Weibull. The fatigue crack growth rate seems to follow the 3-parameter Weibull and the log-normal distribution. The coefficient of variation (COV) of fatigue crack growth life was observed to decrease as the crack grows. A strong negative linear correlation exists between the coefficient C and the exponent m in Paris model. Fatigue crack growth rate data shows a normal distribution for both m and logC.

  • PDF

일정진폭하중하의 확률론적 피로균열전파거동 (Probabilistic Fatigue Crack Growth Behavior under Constant Amplitude Loads)

  • 정현철;김선진
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.923-929
    • /
    • 2003
  • In this paper, an analysis of fatigue crack growth behavior from a statistical point of view has been carried out. Fatigue crack growth tests were conducted on sixteen pre-cracked compact tension (CT) specimens of the pressure vessel (SPV50) steel in controlled identical load and environmental conditions. The assessment of the statistical distribution of fatigue crack growth experimental data obtained from SPV50 steel was studied and also the correlation of the parameter C and m in the Paris-Erdogan law was discussed. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Weibull. The fatigue crack growth rate seems to follow the 3-parameter Weibull and the log-normal distribution. The coefficient of variation (COV) of fatigue crack growth life was observed to decrease as the crack grows. Fatigue crack growth rate data shows a normal distribution for both m and logC. A strong negative linear correlation exists between the coefficient C and the exponent m.

알루미나 세라믹스의 동적피로거동 (Dynamic Fatigue Behavior of Alumina Ceramics)

  • 이홍림;이규형;박성은
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1053-1059
    • /
    • 1997
  • The dynamic fatigue behavior of alumina ceramics was observed at room temperature using four point bending system. The dynamic fatigue fracture strength and the dynamic fatigue lifetime were observed as a function of crosshead speed and the notch length. The notched specimen showed the smaller deviation in dynamic fatigue fracture strength than the unnotched specimen. The crack growth exponent n and the material constant A of the notched specimen could be represented as functions of the notch length. Fracture strength of the specimen calculated from the notch length, when the notch length was regarded as the crack size, was in good agreement with the measured 4 point bending strength. Fracture surface of the specimen showed the different fracture modes according to the crosshead speed. The four point flexural strength, fracture toughness, Young's modulus and Weibull modulus of the alumina were measured as 360 MPa, 3.91 MPa.m1/2, 159GPa, 17.64, respectively.

  • PDF

해양구조용강의 피로거동에 관한 연구 (A Study on Shot peening on Fatigue Crack Growth Property for Marine Structural Steel)

  • 박경동;하경준
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.313-318
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue lift: and strength. By using the methods mentioned above, I arrived at the following conclusions 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF

압력용기용 강의 저온 피로크랙전파 하한계 특성에 관한 연구 (A Study on the Fatigue Crack Propagation Threshold Characteristic in Steel of Pressure Vessel at Low Temperature)

  • 박경동;박상오
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.326-331
    • /
    • 2001
  • In this study. CT specimens were prepared from ASME SA5l6 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -10$0^{\circ}C$ and -12$0^{\circ}C$ in the range of stress ratio of 0.1 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ΔKsub/th/ in the early stage of fatigue crack growth ( Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da.dN -ΔK in RegionII, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

압력용기용 강의 저온 피로크랙 하한계 특성에 관한 연구(II) (A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature)

  • 박경동;김정호;정찬기;하경준
    • 한국해양공학회지
    • /
    • 제14권3호
    • /
    • pp.78-83
    • /
    • 2000
  • In this study, CT specimens were prepared from AST SA516 Gr. 70 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at 25$^{\circ}C $, -60$^{\circ}C $, -80$^{\circ}C $ and -100$^{\circ}C $ and in the range of stress ratio of 0.05, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\delta} K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\delta $K in the stable of fatigue crack growth (Region II) were increased in proportion to descending temperature. It was assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN -$\delta $K in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate da/dN is rapid in proportion to descending temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF