• Title/Summary/Keyword: Fatigue Crack Behavior

Search Result 762, Processing Time 0.026 seconds

Effect of a Single Applied Overload on Fatigue Crack Growth Behavior in Laser-welded Sheet Metal

  • Kwak Dai-Soon;Kim Seog-Hwan;Oh Taek-Yul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 2006
  • We investigated fatigue crack growth behavior in laser-welded sheet metal caused by a single applied overload The fatigue specimens were made using butt jointed cold rolled sheet metal that was welded with a $CO_2$ laser, The effects of the specimen thickness and overload ratio were determined from fatigue crack propagation tests, These tests were performed in such a way that the fatigue loading was aligned parallel to the weld line while the crack propagated perpendicular to the weld line, Overload ratios of 1.0, 1.5, and 2. 0 were applied near the tip of the fatigue crack at points located 6, 4, and 2 mm from the weld line. The specimens were either 0.9 or 2.0 mm thick. The size of the plastic zone at the crack tip due to the single applied overload was also determined using finite element analysis.

Analysis and Propagation Behavior of Dissimilar Friction Welded Materials for Fatigue Crack in around Interface (이종마찰압접 계면근방에서의 피로균열의 전파거동 및 해석)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.140-145
    • /
    • 1998
  • In this study, analysis for fatigue crack propagation behavior of interface and aroud interface under rotary bending stress. Though K values are nearly the same in around interface by BEM 2-D, fatigue crack propagated H.A.Z. Around Interface crack propagation speed is m=0.678 in H.A.Z by Paris' law. In this case(friction welded materials: STS304, SM15C), fatigue crack growth is considered SM15C metal microstructure and elastic flow from this result. Result is more metal microstructute dependence than stress dependence by analysis (BEM 3-D, BEM 2-D) and fatigue crack propagation

  • PDF

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • 박경동;정재욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.58-64
    • /
    • 2004
  • The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, and -10$0^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. There is a difference between shot peened specimen and unpeened specimen. Fatigue crack growth rate of shot peened specimen was lower than that of unpeened specimen. Shot peening is improve the resistance of crack growth by fatigue that make a compressive residual stress on surface. That is the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation. Temperature goes down, fatigue crack growth rate decreased.

A Prediction of Initial Fatigue Crack Propagation Life in a notched Component Taking Elasto-Plastic Behavior (탄소성 응력집중부에서의 초기피로균열전파수명의 예측)

  • Cho, Sang-Myung;Kohsuke Horikawa
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.61-70
    • /
    • 1988
  • In order to consider the concept of the fitness for purpose'in fatigue design of offshore structure, fracture mechanics is applied to evaluate initial or weld defects. Generally, linear elastic fracture mechanics has been applied to tstimate initial fatigue crack propagation rate as well as long fatigue crack propagation rate. But, initial fatigue crack propagation rate in elasto-plastic notch field may not be characterized by application of stress intensity factor range .DELTA. K, because plastic effect due to stress concentration of notch may contribute to initial crack propagation. Therefore, to introduce the plastic effect into fatigue crack driving force, in this studty, the evaluating method of J-integral range .DELTA. J, was developed by willson was modified for application to notch field. In calculation of .DELTA. J obtained from the modified J-integral, stress gradient and crack closure behavior in the notch field were considered. The initial crack propagation rates in the notch fields of mild steels and high tensile strength steels were correlated to .DELTA. J. As the result, it was cleared that the present .DELTA. J is applicable to charachterize the fatigue crack propagation rates in both the elastic and elasto-plastic notch fields.

  • PDF

Fatigue crack Propagation Rate and Crack Opening behavior in Weldment Observed by Laser ISDG Method (레이저간섭변위 게이지로 관찰한 용접재에서의 피로균열 열림거동과 피로균열 전파속도)

  • Song, Sam-Hong;Kim, Hyun;Choi, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.908-917
    • /
    • 1995
  • The constant .DELTA.K fatigue tests are performed in SS41 and its weldments to investigate crack opening behavior and fatigue crack propagation behavior at each parts of weldment and its boundary layer. The weldments were annealed after welding for the purpose of relieving residual stress. Every weldments has notch at weld metal zone, and fatigue crack propagates from weld metal zone to vase metal zone perpendicular to weld line. The Laser ISDG method is used in order to determine the crack opening ratio, this method is more precise than indirect measurement method, and faster and easier than other direct measurement method.

The Fatigue Behavior by Variety of Crack Length of Surface Cracked Plate with Stress Concentration Part (응력집중부를 갖는 표면균열재의 균열길이 변화에 따른 피로거동)

  • 남기우;김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.83-91
    • /
    • 1995
  • Surface defects in structural members are apt to be origins of fatigue cracks growth, which may cause serious failure of whole structures. Most structure has a part where stress concentrates such as welded joints, corner parts, etc. And then, analysis on crack growth and penetration from these defects, therefore, is one of the most important subjects for the reliability of LBB design. The present paper has performed an experimental and analysis on the fatigue crack propagation by variety in crack length of surface cracked plate with stress concentration part. The crack growth behavior can be explained quantitatively by using Newman-Raju equation and the stress partitioning method proposed by ASME B&P Code Sec. XI. The stress concentration factor $K_t$ has affected on the crack growth. The crack growth after penetration depends upon the initial front side crack length.

  • PDF

A Study of the Effect of Stress Waveform on the Behavior of High Temp. Fatigue Crack Propagation Using J Parameters (J파라미터를 이용한 고온피로균열전파 거동에 미치는 응력파형 영향의 연구)

  • Hur, Chung-Weon;Park, Won-Jo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.8-12
    • /
    • 2000
  • The fatigue crack propagation tests were performed in triangular and holding-time stress waveforms at $650^{\circ}C$. The behavior of fatigue crack propagation was investigated according to waveform. The analysis of high temperature fatigue crack propagation by the stress intensity factor range ${\Delta}K$, elastic fracture mechanics parameter, was not available. The behaviors of high temperature fatigue crack propagation by the J-integral(${\Delta}J_f$, J' and ${\Delta}J_c$), elasto-plastic fracture mechanics parameter, were investigated in a number of stress waveforms. The fast-fast waveform exhibited cycle-dependent(fatigue type), the slow-fast and the hold time with 500sec waveforms appear to be time-dependent(creep type) and the fast-slow and the hold time with 5, 25sec waveforms exhibited conbined behavior of both types(fatigue-creep conbined type).

  • PDF

Prediction of Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload (혼합모드 단일과대하중 하에서 피로균열 전파거동의 예측)

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.359-364
    • /
    • 2004
  • In this study, experiments were tried on the mixed-mode I+II single overloading model which changes the loading mode of overload and fatigue load. Aspects of deformation field in front of the crack which is formed by mixed-mode I+II single overloading were experimentally studied. Then the shape and size of mixed-mode plastic zone were approximately calculated. The propagation behavior of fatigue crack was examined under the test conditions combined by changing the loading mode. The behavior of fatigue cracks were greatly affected by shapes of plastic deformation field and applying mode of fatigue load. Accuracy of prediction and evaluation for fatigue life may be improved by considering all aspects of deformation and behavior of fatigue cracks.

  • PDF

The Variation of Fatigue Crack Propagation Behavior by Crack-crack Interaction (크랙 사이의 간섭에 의한 피로크랙 전파거동의 변화)

  • 송삼홍;배준수;최병호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.820-825
    • /
    • 1994
  • It is improtant to examine life or crack propagation behavior of structures because of its safety evaluation. The purpose of this study is to investigate the effect of crack-crack interaction to evaluate fatigue life and crack behavior. In this study, the behavior of the interaction of two cracks is studied by experiment. The vertical distance of two cracks is varied to make different interaction stress field. In addition, the effect of plastic zone is considered to examine crack propagation path and propagation rate.

  • PDF

Fatigue Crack Growth Behavior of Ni-Cr-Mo Steel under Acid Fog Environment (산성안개 환경하에서 Ni-Cr-Mo 강의 피로크랙전파거동)

  • Kim, Min-Geon;Im, Yong-Ho;Kim, Man-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1841-1846
    • /
    • 2000
  • To examine the effect of acid fog on the corrosion fatigue behavior in structural steel, fatigue tests under acid fog atmosphere were carried out in comparison with distilled water. The corrosive c omponents contained in acid fog pile up the corrosion products on crack face and show a crack branching and crack tip blunting. Therefore, due to these workings crack growth rate was reduced by decreasing the effective stress range in crack tip rather than under distilled water. Also the effect of sulfuric acid, which is the main component of acid fog, and testing speed on fatigue crack growth were examined. It was found that corrosion behavior was remarkably dependent upon pH and Hz rather than components of acid fog. According as pH and testing speed decrease below a specific value, crack growth was accelerated in comparison with distilled water. This reveals that due to liquid having strong acidity and slow speed of test the crack face dissolution was promoted, so crack closure was disturbed in the process of stress descent.