• 제목/요약/키워드: Fatigue Behavior Parameter

검색결과 76건 처리시간 0.022초

SUS 304강의 하중파형에 따른 고온피로균열전파속도 및 전체하중파형의 평가방법의 연구 (A study on fatigue crack growth with loading waveform and analysis method for all loading waveform at elevated temperature in SUS 304 stainless steel)

  • 이상록;이학주;허정원;임만배
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.122-130
    • /
    • 1992
  • The effect of loading waveform on elevated temperature low-cycle fatigue crack growth behavior in a SUS 304 stainless steel have been investigated under symmetrical trangular (fast-fast), trapezoidal and asymmetrical(fast-slow, slow-fast) waveforms at 650.deg. C. It was found that the crack growth rate in fast-slow loading waveform appeared to be higher a little and the crack growth rate in slow-fast loading waveform much higer than that in fast-fast loading waveform, and difference in crack growth rate between fast-show and slow-fast waveforms nearly didn't appear in the region of da/dN>10/sup -2/ The crack growth rate in the trapezoidal loading waveform with t/sub h/=500sec appeared to be faster than that in slow(500sec)-fast(1sec). In addition, parameter modified J-integral could be considered as useful parameter for fatigue crack growth rate in all waveforms. The result obtained are as follow. da/dN=4.91*10/sup -3/ (.DELTA. J/sub c/)/sup 0.565/.

  • PDF

Fe-18Mn TWIP강의 Pre-strain에 따른 저주기 및 고주기 피로 수명 예측 모델 (A Prediction Model for Low Cycle and High Cycle Fatigue Lives of Pre-strained Fe-18Mn TWIP Steel)

  • 김용우;이종수
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.11-16
    • /
    • 2010
  • The influence of pre-strain on low cycle fatigue behavior of Fe-18Mn-0.05Al-0.6C TWIP steel was studied by conducting axial strain-controlled tests. As-received plates were deformed by rolling with reduction ratios of 10 and 30%, respectively. A triangular waveform with a constant frequency of 1 Hz was employed for low cycle fatigue test at the total strain amplitudes in the range of ${\pm}0.4\;{\sim}\;{\pm}0.6$ pct. The results showed that low-cycle fatigue life was strongly dependent on the amount of pre-strain as well as the strain amplitude. Increasing the amount of prestrain, the number of reversals to failure was significantly decreased at high strain amplitudes, but the effect was negligible at low strain amplitudes. A new model for predicting fatigue life of pre-strained body has been suggested by adding ${\Delta}E_{pre-strain}$ to the energy-based fatigue damage parameter. Also, high-cycle fatigue lives predicted using the low-cycle fatigue data well agreed with the experimental ones.

Degradation reliability modeling of plain concrete for pavement under flexural fatigue loading

  • Jia, Yanshun;Liu, Guoqiang;Yang, Yunmeng;Gao, Ying;Yang, Tao;Tang, Fanlong
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.469-478
    • /
    • 2020
  • This study aims to establish a new methodological framework for the evaluation of the evolution of the reliability of plain concrete for pavement vs number of cycles under flexural fatigue loading. According to the framework, a new method calculating the reliability was proposed through probability simulation in order to describe a random accumulation of fatigue damage, which combines reliability theory, one-to-one probability density functions transformation technique, cumulative fatigue damage theory and Weibull distribution theory. Then the statistical analysis of flexural fatigue performance of cement concrete tested was carried out utilizing Weibull distribution. Ultimately, the reliability for the tested cement concrete was obtained by the proposed method. Results indicate that the stochastic evolution behavior of concrete materials under fatigue loading can be captured by the established framework. The flexural fatigue life data of concrete at different stress levels is well described utilizing the two-parameter Weibull distribution. The evolution of reliability for concrete materials tested in this study develops by three stages and may corresponds to develop stages of cracking. The proposed method may also be available for the analysis of degradation behaviors under non-fatigue conditions.

Mean Stress를 고려한 11.7Cr-1.1Mo강의 고온저주기 피로특성에 관한 연구 (A Study of Low Cycle Fatigue Characteristics of 11.7Cr-1.1Mo Heat Resisting Steel with Mean Stress)

  • 홍상혁;홍춘희;이현우
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.133-141
    • /
    • 2006
  • The Low cycle fatigue behavior of 11.7Cr-1.1Mo heat-resisting steel has been investigated under strain-controlled conditions with mean stresses at room temperature and $300^{\circ}C$. For the tensile mean stress test, the initial high tensile mean stress generally relaxed to zero at room temperature, however, at $300^{\circ}C$ initial tensile mean stress relaxed to compressive mean stress. Low cycle fatigue lives under mean stress conditions are usually correlated using modifications to the strain-life approach. Based on the fatigue test results from different stain ratio of -1, 0, 0.5, and 0.75 at room temperature and $300^{\circ}C$, the fatigue damage of the steel was represented by using cyclic strain energy density. Total strain energy density considering mean stress indicated well better than not considering mean stress at $300^{\circ}C$. Predicted fatigue life using Smith-Watson-Topper's parameter correlated fairly well with the experimental life at $300^{\circ}C$.

변온 하중하에 있는 재료의 이력거동 예측을 위한 다층 모델에 관한 연구 (A Study on the Overlay Model for Description of Hysteresis Behavior of a Material under Non-isothermal Loading)

  • 김상호;서동훈;여태인
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.133-142
    • /
    • 2010
  • The present work focuses on the characterization of material parameters of the Overlay(multilinear hardening) model for analyzing the non-isothermal cyclic deformation. In the previous study, all the parameters were especially based on the Overlay theories, and a simple method was suggested to find out the best material parameters for the isothermal cyclic deformation analysis. Based on the previous research this paper f dther improves the isothermal parameters and suggests how to apply the isothermal parameters to the non-isothermal conditions especially for the description of TMF(Thermo-Mechanical Fatigue) hysteresis behavior. The parameters are determined and calibrated using 400 series stainless steel test data in the reference papers. For the implementation into ABAQUS, a user subroutine is developed by means of ABAQUS/UMAT. The finite element results show good agreement with test for the case of uniaxial non-isothermal cyclic loading, signifying the proposed method can be used in the TMF analysis of the converter-inserted heavy duty muffler system and the stainless steel exhaust-manifold system which are to be done in our future research.

손상역학에 의한 레일의 구름접촉피로 연구 (A Study on Rolling Contact Fatigue of Rail by Damage Mechanics)

  • 강성수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.931-937
    • /
    • 2008
  • The rail/wheel rolling contact affects the microstructure in the surface layer of rail. Recently. continuum damage mechanics allows us to describe the microprocesses involved during the straining of materials and structures at the macroscale. Elastic and plastic strains. the corresponding hardening effects are generally accepted to be represented by global continuum variables. The purpose of continuum damage mechanics is to introduce the possibility of describing the coupling effects between damage processes and the stress-strain behavior of materials. In this study. the continuum damage mechanics caused by elastic deformation was briefly introduced and applied to the fatigue damage of the rails under the condition of cyclic loading. The material parameter for damage analysis was first determined so that it could reproduce the life span under the compressive loading in the vicinity of fatigue limit. Some numerical studies have been conducted to show the validity of the present computational mechanics analysis.

고온 보일러 헤더의 잔여수명평가 사례 연구 (A Case Study of Remaining Life Assessment for Boiler Header)

  • 백운봉;이해무;박종서;김동진;윤기봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.274-279
    • /
    • 2001
  • Creep-fatigue crack growth behavior was experimentally measured particularly when a crack was located in the heat affected region of 1Cr-0.5Mo steel. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_t$-parameter. It was found that the crack growth rates were the highest when the crack path was located along the fine-grained heat affected zone(FGHAZ). Cracks located in other heat affected regions had a tendency to change the crack path eventually to FGHAZ. Creep-fatigue crack growth law of the studied case is suggested in terms of $(da/dt)_{avg}$ vs. $(C_t)_{avg}$ for residual life assessment.

  • PDF

微視組織에 敏感한 균열닫힘 현상 (Microstructurally sensitive crack closure)

  • 김정규;황돈영
    • 대한기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.898-905
    • /
    • 1986
  • 본 논문에서는 강의 피로균열진전거동과 미시조직과의 관계를 밝히기 위한 연 구의 일환으로 제이상 마르텐사이트 중에 모상 페라이트가 존재하는 복합조직강을 준 비하여 이들 강의 제이상 경도변화에 따른 피로균열진전저항을 균열휨과 균열닫힘을 통하여 검토하였다.

구조용 케이블의 축방향 피로거동 (Axial Fatigue Behavior of Structural Cables)

  • 서정인;장승필
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.589-600
    • /
    • 1998
  • 본 연구는 케이블의 피로실험에서 라틴방격법의 유용성을 입증하고, 현수교에서의 행어로서 사용되는 와이어로프의 축방향 피로거동을 보기 위하여 계획되었다. 평균 응력, 응력범위, 시편의 길이를 실험 인자로 선정하였다. 위에 선정한 인자의 효과는 응력 범위의 효과를 제외하고는 이론이 제기되고 있다. 각 인자에서는 3개의 수준이 사용되었다. 각 셀에서 자유도를 증가시키기 위하여 3번을 반복 수행하였다. 피로파괴의 주요 원인은 격자 접촉점에서의 접촉성 피로(fretting fatigue)였다. 선정된 3개의 인자는 모두 유의하였다. 응력범위의 효과는 예측된 바와 같았으며, 길이효과는 예상과 반대의 결과를 보여주었고, 응력수준의 효과는 채택된 응력수준에 따라 실험결과가 달라질 수 있음을 보여줬다. 그러므로 라틴방격법은 직교성이 갖춰진다면 피로거동에 영향을 미치는 인자들을 규명하는 데에 매우 효과적인 실험 방법임을 알 수 있다.

  • PDF

기계적합금화된 분산형 Al-4Mg기 합금의 피로거동 (The Fatigue Behavior of Mechanically Alloyed Al-4Mg Alloys Dispersed with Oxide Particles)

  • 편정우;조준식;권숙인;조윤성
    • 열처리공학회지
    • /
    • 제6권4호
    • /
    • pp.237-242
    • /
    • 1993
  • The fatigue behaviors of mechanically alloyed Al-4Mg alloys dispersed with either $Al_2O_3$ or $MgAl_2O_4$ oxide particles were investigated. This study maily concerned with the role of coherency of dispersed particles with the matrix on the fatigue behavior of the alloys. The $MgAl_2O_4$ which has a spinel structure with the lattice parameter of exactly the twice of Al showed the habit relation with the matrix. The mechanically alloyed Al-4Mg alloys showed stable stress responses with fatigue cycles from start to failure regadless of strain amplitudes and of existence of dispersoids. The Al-4Mg alloy dispersed with $MgAl_2O_4$ showed not only the better static mechanical properties but also the better low cycle fatigue resistance than that with $Al_2O_3$, i.e., much higher plastic strain energy dissipated to failure, at low strain amplitude. However, this alloy showed inferior fatigue resistance to that dispersed with $Al_2O_3$ or that without dispersion at high strain amplitude. These results imply that $MgAl_2O_4$ may promote lowering the stacking fault energy of the alloy inherited from the coherency with the matrix so that dislocations shuttle back and forth on the same slip plane without cross slipping to other planes during fatigue at low strain amplitude resulting in long fatigue life.

  • PDF