• Title/Summary/Keyword: Fastening Detection

Search Result 4, Processing Time 0.017 seconds

A Smart Car Seat System Detecting and Displaying the Fastening States of the Seat Belt and ISOFIX (안전벨트와 아이소픽스의 체결 상태를 감지하여 알려주는 스마트 카시트 시스템)

  • SeungHeun Park;Sangeon Jeon;Beonghoon Kong;seunghwan Kim;Seung Hee Shin;Won-tak Seo;Jae-wan Lee;Min Ah Kim;Chang Soon Kang
    • Journal of Information Technology Services
    • /
    • v.22 no.6
    • /
    • pp.87-102
    • /
    • 2023
  • Existing child car seats do not have a monitoring means for the driver or guardian to effectively recognize the status of whether the seat belt of car seat is fastened and whether the ISOFIX of the car seat is fastened to the inside device of the vehicle. In this paper, we propose a smart car seat system which can monitor in real time, whether the seat belt of a child seated in the car seat is fastened and whether the ISOFIX of the car seat is fastened. The proposed system has been developed with a prototype, in which a Hall sensor, magnet, Bluetooth, and display device are used to detect whether these are fastened and to display the detection results. The prototype system provides the detection results as texts and alarm signal to the display for driver or guardian' smartphone in the car in motion. With functional tests of the prototype system, it was confirmed that the detection functions are properly operated, and the detection results were transmitted to the display device and smartphone via Bluetooth within 0.5 seconds. It is expected that the development system can effectively prevent safety accidents of child car seats.

Development of High Precision Fastening torque performance Nut-runner System (고정밀 체결토크 성능 너트런너 시스템 개발)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.35-42
    • /
    • 2019
  • Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.

Performance Analysis of Object Detection Method for Railway Track Equipment Based on YOLO (YOLO 기반 선로 고정장치 객체 탐지 기법의 성능 분석)

  • Junhwi Park;Changjoon Park;Namjung Kim;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.69-71
    • /
    • 2023
  • 본 논문은 YOLO 기반 모델의 철도 시스템 내 선로 고정장치 탐지 성능을 비교하고 분석한다. 여기서 철도 시스템은 열차가 주행하기 위한 선로, 침목, 패스너 등의 구성요소를 포함한다. 침목은 지반과 직접적으로 연결되며, 선로를 지반 위에 안정적으로 지지하고 궤간을 정확하게 유지하는 역할을 한다. 또한, 패스너는 선로를 침목에 단단히 고정시키는 역할을 한다. 이러한 선로 고정장치의 부재는 인명 사고로 이어질 수 있어 지속적인 관리와 유지 보수가 필수적이다. 본 논문에서는 철도 시스템의 선로 고정장치 탐지를 위해 YOLO V5 및 V8 딥러닝 모델의 적용 가능성을 실험적으로 접근하며, 두 모델의 탐지 성능을 비교한다. 실험 결과, YOLO V8 및 V5 모델은 모두 뛰어난 성능을 보이는데, 특히 YOLO V8 모델이 더욱 우수한 성능을 보인다. 이로써 YOLO 알고리즘은 선로 고정장치 탐지에 적합하다는 것을 증명한다. 그러나 일부 False Positive Sample이 관측되었음을 확인하고, 이로부터 모델 성능의 개선이 필요하다는 결론을 도출하였다.

  • PDF

Object Pose Estimation and Motion Planning for Service Automation System (서비스 자동화 시스템을 위한 물체 자세 인식 및 동작 계획)

  • Youngwoo Kwon;Dongyoung Lee;Hosun Kang;Jiwook Choi;Inho Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.176-187
    • /
    • 2024
  • Recently, automated solutions using collaborative robots have been emerging in various industries. Their primary functions include Pick & Place, Peg in the Hole, fastening and assembly, welding, and more, which are being utilized and researched in various fields. The application of these robots varies depending on the characteristics of the grippers attached to the end of the collaborative robots. To grasp a variety of objects, a gripper with a high degree of freedom is required. In this paper, we propose a service automation system using a multi-degree-of-freedom gripper, collaborative robots, and vision sensors. Assuming various products are placed at a checkout counter, we use three cameras to recognize the objects, estimate their pose, and create grasping points for grasping. The grasping points are grasped by the multi-degree-of-freedom gripper, and experiments are conducted to recognize barcodes, a key task in service automation. To recognize objects, we used a CNN (Convolutional Neural Network) based algorithm and point cloud to estimate the object's 6D pose. Using the recognized object's 6d pose information, we create grasping points for the multi-degree-of-freedom gripper and perform re-grasping in a direction that facilitates barcode scanning. The experiment was conducted with four selected objects, progressing through identification, 6D pose estimation, and grasping, recording the success and failure of barcode recognition to prove the effectiveness of the proposed system.