• 제목/요약/키워드: Fastener

검색결과 195건 처리시간 0.028초

콘크리트궤도에 고속분기기 설치를 고려한 교량설계 및 시공기법 (Design and Construction Method Considering Turnout for High-speed on The Bridge with Concrete Track)

  • 김인재;오세영;주환중
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.71-79
    • /
    • 2008
  • The concrete track is being used at the Phase II of the Kyeongbu High Speed Railway and New Constructed Honam High Speed Railway. When it makes a decision of bridge type, It has to consider about longitudinal forces of Continuous Welded Rail, Displacement at the end of bridges, Up-lift forces for fastener on the track. If it is installed turnout on the bridge, There is likelihood of the deck twist by applying the each difference longitudinal forces at the 4 each rails and the buckling by concentration of rail stress at the turnout. Moreover, If it is installed turnout on the continuous bridge and REJ(Rail Expansion Joint) on the main track or turnout track. It is hard to keep a safety for rail because of coming to twist or folding at the expansion of deck on the turnout track. Therefore when it is a design of bridge with turnout. It need to take bridge type to minimize an additional axial force and a displacement at the turnout. This paper makes a study of the composite steel arch bridge that is able to resolve criteria requirements of safety for track with turnout and suggest a helpful design method for bridge considering track with turnout by being based on design and construction method of Eonyang Bridge at the north part of Ulsan Station in Phase II of the Kyeongbu High Speed Railway.

  • PDF

궤도 유지보수를 위한 틀림진전 예측 및 일정최적화 (Track Deterioration Prediction and Scheduling for Preventive Maintenance of Railroad)

  • 김대영;이성근;이기우;우병구;이성욱;김기동
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1359-1370
    • /
    • 2008
  • In the track geometry such as rails, sleepers, ballasts and fastener, track deterioration occurs by repetitive train weight and the high-speed railway takes a trend faster than normal. Track deterioration of over threshold value harms ride comfort and furthermore affect in trains safety seriously. An organic and systematic track maintenance system is very important because a trend of the track deterioration effects on track life-cycle and running safety. Also costs of the railway track permanent way and its maintenance are extremely large, forming a significant part of the total infrastructure expenditure. Therefor reasonable and efficient track maintenance has to be planed on a budget. It is required to carry out not only corrective maintenance but preventive maintenance for the track maintenance. In order to perform maintenance jobs in the boundary of the machines and resources given regarding the type and amount jobs, it is necessary to determine feasible or optimal scheduling considering the priority. In this study, the system organization and required functions for the development of track maintenance system supported track deterioration prediction and optimal scheduling are proposed.

  • PDF

국내 시판 유아용 커버롤의 디자인 선호도에 관한 연구 (A Study on the Design Preferences of the Current Infant Coveralls)

  • 도월희
    • 대한가정학회지
    • /
    • 제41권6호
    • /
    • pp.157-166
    • /
    • 2003
  • The purpose of this study was to provide information on how to improve the current design of infant coveralls through analysis of the design preferences of Korean consumer. In order to compile the information about preferences with the detail design of infant coveralls, a questionnaire was administered to mothers of 241 infants (aged under 36 months) living in Seoul, and analyzed using the SPSS WIN.10.0 program. The results of this study were as follows : 1) Results of buying conditions and design preference of infant coverall : To the question asking what kind of materials they preferred according to the season as material for infant coverall, the respondents preferred cotton hit as the materials for summer, but padding material for winter. The most favored design type were a flat collar, regular bodice type without cutting line, a raglan sleeves, snap front fastener, elastic band cuffs. 2) There is significant difference in preferred material and design among the month of age groups. 3) Analysis of the differences in preferred material and detail design according to gender In preferred material, it seemed as if girl baby group prefer cotton knit material, while boy baby group prefer padding material. There is definite difference in preferred neckline type, girl baby group prefer flat collar, while boy baby group prefer stand collar.

GPR/PBS/LFWD를 이용한 궤도하부 상태평가 (Evaluation on the Condition of Track Substructure Using GPR/PBS/LEWD)

  • 김대상;황선근;신민호;박태순
    • 한국지반공학회논문집
    • /
    • 제21권5호
    • /
    • pp.163-170
    • /
    • 2005
  • 궤도상부(레일, 체결구, 침목)를 완전하게 잘 지지하기 위해서는 궤도하부(도상, 노반)가 충분한 강도를 가지고 균질한 강성을 가져야 한다. 궤도의 수직지지강성은 궤도하부의 상태(세립분 함량, 함수비)에 크게 영향을 받는다. 따라서 궤도의 수직지지강성을 평가하기 위하여 궤도하부의 상태를 평가하는 것은 매우 중요하다. 본 논문에서는 궤도하부의 상태를 진단할 수 있는 GPR/PBS/LFWD로 구성된 궤도기초상태평가법을 제안하였다. 제안된 궤도기초 상태평가법의 적용성을 평가하기 위하여 실내 실험 및 현장시험을 수행하였다.

Analysis of Spiral Lattice Girder Shape in preparation for HSR Speed Increase

  • Eum, Ki-Young;Lee, Jee-Ha;Park, Young-Kon;Yun, Jangho;Jeong, Seongwoon
    • International Journal of Railway
    • /
    • 제6권4호
    • /
    • pp.160-168
    • /
    • 2013
  • A spiral lattice girder-reinforced Bi-block sleeper which has enhanced durability against increasingly growing impact force and vibration by wheel load and improved structural performance while train runs at 350km/h high speed is hereby proposed. The section of a spiral lattice girder has stable and superior structural performance thanks to its confinement effect. To compare and analyze the structural performance of spiral lattice girder-reinforced bi-block sleeper, strain and stress distribution were evaluated after applying same load condition as existing triangular lattice girder-reinforced biblock sleeper, and to compare the structural performance of triangular lattice girder and spiral lattice girder, structural analysis of lattice girder was performed separately. As a result, a spiral lattice girder proved to have had superior structural characteristics to bi-block sleeper, and furthermore as a result of evaluating the fastener interface and constructibility with shape-improved lattice girder, no interference with existing railroad structure was found and in terms of cost efficiency, a spiral lattice girder appeared to be superior to existing lattice girder.

고속철도 교량상판의 온도신축작용이 궤도처짐에 미치는 영향과 대책에 관한 연구 (The Effect and Countermeasures of The Vertical Track Settlement Caused by Expand and Contract Behavior of the High-Speed Railway Bridge Girder)

  • 강기동
    • 한국철도학회논문집
    • /
    • 제7권3호
    • /
    • pp.283-289
    • /
    • 2004
  • According to continuos welded rails on a bridge, temperature changes bring about the expansion of the bridge deck adding axil forces on the track. Moreover, the ballast on the bridge deck expansion joint is moved due to the bridge deck. If bridge decks are longer, the influence is greater, loosening ballast, causing track irregularities, and deteriorating passengers' comfort. Considering structure of bridge itself and tolerance of track irregularities caused by the loosened ballast on bridges, the maximum length of a deck should be less than 80m, which is the same as the standard of the French railway. In this study, an interaction between the expansion related to the bridge length and irregularity in longitudinal level referring to measurements and maintenance works performed in the high-speed railways was analyzed. This research shows that installation of sliding plate or vertical ballast stopper is not a good option since it is difficult to install. On the other hand, installation of movable fastener or gluing is easy but its influence is insignificant. To conclude, switch tie tamping or manual tamping is more effective than others.

배열 압전 능동 센서를 이용한 볼트 구멍의 층간분리 탐지 (Delamination Detection at a Bolt Hole Using a Built-in Piezoelectric Active Sensor Array)

  • 박찬익;김민성
    • 한국항공우주학회지
    • /
    • 제36권6호
    • /
    • pp.550-557
    • /
    • 2008
  • 영구히 장착된 배열 압전 능동 센서를 사용하여 복합재 보강판의 볼트 구멍에 있는 층간분리 손상을 탐지하였다. 다양한 신호처리 기법을 사용하여 국부적인 수직하중에 의하여 발생한 볼트 구멍 주위의 눈에 보이지 않는 작은 층간분리를 탐지하였다. 배열 압전 센서를 사용하여 진단신호를 생성하였으며, 응답신호를 측정하였다. 응답신호를 신호 처리하여 손상에 민감한 특성들을 추출하였다. 이 특성들을 사용하여 손상 지수를 계산하였고, 손상 지수를 사용하여 손상의 유무와 위치를 추정하였다.

내진성능 향상을 위한 밸브지지대 최적형상 설계 (Design Optimization of Valve Support with Enhanced Seismic Performance)

  • 김형은;금동엽;김대진;김준호;홍성경;최원목;김상영;석창성
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.997-1005
    • /
    • 2015
  • In this study, modal analysis and equivalent static load analysis for valve supports of 26" gas piping in gas stations were conducted and the existing straight and inclined types of valve supports were compared using seismic performance testing. Also, a new valve support shape was suggested by optimizing position of fastener holes, width and thickness of the support, and size of bracket. Improvement in seismic performance by design optimization was verified through equivalent static load analysis. The seismic performance of the newly proposed valve support was greatly improved and the maximum displacement and maximum stress of the seismic load was about 20% lower than those of the existing valve support.

Development and validation of a numerical model for steel roof cladding subject to static uplift loads

  • Lovisa, Amy C.;Wang, Vincent Z.;Henderson, David J.;Ginger, John D.
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.495-513
    • /
    • 2013
  • Thin, high-strength steel roof cladding is widely used in residential and industrial low-rise buildings and is susceptible to failure during severe wind storms such as cyclones. Current cladding design is heavily reliant on experimental testing for the determination of roof cladding performance. Further study is necessary to evolve current design standards, and numerical modelling of roof cladding can provide an efficient and cost effective means of studying the response of cladding in great detail. This paper details the development of a numerical model that can simulate the static response of corrugated roof cladding. Finite element analysis (FEA) was utilised to determine the response of corrugated cladding subject to a static wind pressure, which included the anisotropic material properties and strain-hardening characteristics of the thin steel roof cladding. The model was then validated by comparing the numerical data with corresponding experimental test results. Based on this comparison, the model was found to successfully predict the fastener reaction, deflection and the characteristics in deformed shape of the cladding. The validated numerical model was then used to predict the response of the cladding subject to a design cyclone pressure trace, excluding fatigue effects, to demonstrate the potential of the model to investigate more complicated loading circumstances.

Experimental and numerical investigation of track-bridge interaction for a long-span bridge

  • Zhang, Ji;Wu, Dingjun;Li, Qi;Zhang, Yu
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.723-735
    • /
    • 2019
  • Track-bridge interaction (TBI) problem often arises from the adoption of modern continuously welded rails. Rail expansion devices (REDs) are generally required to release the intensive interaction between long-span bridges and tracks. In their necessity evaluations, the key techniques are the numerical models and methods for obtaining TBI responses. This paper thus aims to propose a preferable model and the associated procedure for TBI analysis to facilitate the designs of long-span bridges as well as the track structures. A novel friction-spring model was first developed to represent the longitudinal resistance features of fasteners with or without vertical wheel loadings, based on resistance experiments for three types of rail fasteners. This model was then utilized in the loading-history-based TBI analysis for an urban rail transit dwarf tower cable-stayed bridge installed with a RED at the middle. The finite element model of the long-span bridge for TBI analysis was established and updated by the bridge's measured natural frequencies. The additional rail stresses calculated from the TBI model under train loadings were compared with the measured ones. Overall agreements were observed between the measured and the computed results, showing that the proposed TBI model and analysis procedure can be used in further study.