• Title/Summary/Keyword: Fast-tracking MPP

Search Result 9, Processing Time 0.025 seconds

Unbounded Binary Search Method for Fast-tracking Maximum Power Point of Photovoltaic Modules

  • Hong, Yohan;Kim, Yong Sin;Baek, Kwang-Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.454-461
    • /
    • 2016
  • A maximum power point tracking (MPPT) system with fast-tracked time and high power efficiency is presented in this paper. The proposed MPPT system uses an unbounded binary search (UBS) algorithm that continuously tracks the maximum power point (MPP) with a binary system to follow the MPP under rapid-weather-change conditions. The proposed algorithm can decide the correct direction of the MPPT system while comparing the previous power point with the present power point. And then, by fixing the MPP until finding the next MPP, there is no oscillation of voltage MPP, which maximizes the overall power efficiency of the photovoltaic module. With these advantages, this proposed UBS is able to detect the MPP more effectively. This MPPT system is based on a boost converter with a micro-control unit to control analog-to-digital converters and pulse width modulation. Analysis of this work and experimental results show that the proposed UBS MPPT provides fast, accurate tracking with no oscillation in situations where weather rapidly changes and shadow is caused by all sorts of things. The tracking time is reduced by 87.3% and 66.1% under dynamic-state and steady-state operation, respectively, as compared with the conventional 7-bit perturb and observe technique.

Analog MPPT Tracking MPP within One Switching Cycle for Photovoltaic Applications (One Switching Cycle 내에 최대전력점을 추종하는 태양광 발전의 아날로 MPPT 제어 시스템)

  • Ji, Sang-Keun;Kwon, Doo-Il;Yoo, Cheol-Hee;Han, Sang-Kyoo;Roh, Chung-Wook;Lee, Hyo-Bum;Hong, Sung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Tracking the Maximum Power Point(MPP) of a photovoltaic(PV) array is usually an essential part of a PV system. The problem considered by MPPT techniques is to find the voltage $V_{MPP}$ or current $I_{MPP}$ at which a PV array should operate to generate the maximum power output PMPP under a given temperature and irradiance. The MPPT control methods, such as the perturb and observe method and the incremental conductance method require microprocessor or DSP to determine if the duty cycle should be increased or not. This paper proposes a simple and fast analog MPPT method. The proposed control scheme will track the MPP very fast and its hardware implementation is so simple, compared with the conventional techniques. The new algorithm has successfully tracked the MPP, even in case of rapidly changing atmospheric conditions, and Has higher efficiency than ordinary algorithms.

Analog Control Algorithm for Maximum Power Trackers Employed in Photovoltaic Applications

  • Ji, Sang-Keun;Jang, Du-Hee;Hong, Sung-Soo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.503-508
    • /
    • 2012
  • Tracking the Maximum Power Point (MPP) of a photovoltaic (PV) array is usually an essential part of a PV system. The problem addressed by Maximum Power Point Tracking (MPPT) techniques is to find the voltage $V_{MPP}$ or current $I_{MPP}$ at which a PV array should operate to generate the maximum power output $P_{MPP}$ under a given temperature and irradiance. MPPT control methods such as the perturb and observe method and the incremental conductance method require a microprocessor or DSP to determine if the duty cycle should be increased or not. This paper proposes a simple and fast analog MPPT method. The proposed control scheme tracks the MPP very quickly and its hardware implementation is simple when compared with the conventional techniques. The new algorithm can successfully track the MPP even in the case of rapidly changing atmospheric conditions. In addition, it has higher efficiency than ordinary algorithms.

A Novel Voltage Control MPPT Algorithm using Variable Step Size based on P&O Method (가변 스텝 P&O 기반 전압제어 MPPT 알고리즘에 관한 연구)

  • Kim, Jichan;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2020
  • In this study, a variable step algorithm is proposed on the basis of the perturb and observe method. The proposed algorithm can follow the maximum power point (MPP) quickly when solar irradiance changes rapidly. The proposed technique uses the voltage change characteristic at the MPP when the environment changes because of insolation or temperature. The MPP is tracked through the voltage control using a variable step method. This method determines the sudden change of solar irradiance by setting the threshold value and operates in fast tracking mode to track the MPP rapidly. When the operation point reaches the MPP, the mode switches to the variable step mode to minimize the steady state error. In addition, the output disturbance is decreased through the optimization of the control method design. The performance of the proposed MPPT algorithm is verified through simulation and experiment.

MPPT Control of Photovoltaic using Variable IC Method (가변 IC 방법을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.27-34
    • /
    • 2012
  • This paper proposes variable incremental conductance(IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. The conventional perturbation & observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small step size reduces a tracking error in the steady state but slows a tracking speed in the transient state. Also, a large step size is fast a tracking speed but increases a tracking error. Therefore, this paper proposes variable IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve a tracking speed and accuracy, when operating point is far from the maximum power point(MPP), the step size uses maximum value and when a operating point is near from the MPP, the step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional PO and IC MPPT algorithm.

A Study on High-Efficiency MPPT Algorithm Based on P&O Method with Variable Step Size (가변 스텝 사이즈를 적용한 P&O 방식 기반의 고효율 MPPT 알고리즘 연구)

  • Kim, Bongsuck;Ding, Jiajun;Sim, Woosik;Jo, Jongmin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, a maximum power point tracking (MPPT) algorithm based on the perturb and observe (P&O) method with variable step size is proposed to improve the dynamic response characteristic of MPPT, using the existing P&O method. The proposed algorithm, which we verified by simulation and experiment, can track the maximum power point (MPP) through duty control and consisted of three operation modes, namely, constant voltage mode, fast mode, and variable step mode. When the insolation is constant, the voltage variation of the operating point at the MPP is reduced through the step size reduction of the duty in the variable step mode. Consequently, the vibration of the operating point is reduced, and the power generation efficiency is increased. When the insolation changes, the duty and the photovoltaic (PV) voltage are kept constant through the constant voltage mode. The operating point then rapidly tracks the new MPP through the fast-mode operation at the end of the insolation change. When the MPP is reached, the operation is changed to the variable step mode to reduce the duty step size and track the MPP. The validity of the proposed algorithm is verified by simulation and experiment of a PV system composed of a PV panel and a boost converter.

Applying Least Mean Square Method to Improve Performance of PV MPPT Algorithm

  • Poudel, Prasis;Bae, Sang-Hyun;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.15 no.3
    • /
    • pp.99-110
    • /
    • 2022
  • Solar photovoltaic (PV) system shows a non-linear current (I) -voltage (V) characteristics, which depends on the surrounding environment factors, such as irradiance, temperature, and the wind. Solar PV system, with current (I) - voltage (V) and power (P) - Voltage (V) characteristics, specifies a unique operating point at where the possible maximum power point (MPP) is delivered. At the MPP, the PV array operates at maximum power efficiency. In order to continuously harvest maximum power at any point of time from solar PV modules, a good MPPT algorithms need to be employed. Currently, due to its simplicity and easy implementation, Perturb and Observe (P&O) algorithms are the most commonly used MPPT control method in the PV systems but it has a drawback at suddenly varying environment situations, due to constant step size. In this paper, to overcome the difficulties of the fast changing environment and suddenly changing the power of PV array due to constant step size in the P&O algorithm, least mean Square (LMS) methods is proposed together with P&O MPPT algorithm which is superior to traditional P&O MPPT. PV output power is predicted using LMS method to improve the tracking speed and deduce the possibility of misjudgment of increasing and decreasing the PV output. Simulation results shows that the proposed MPPT technique can track the MPP accurately as well as its dynamic response is very fast in response to the change of environmental parameters in comparison with the conventional P&O MPPT algorithm, and improves system performance.

A Novel Partial Shading Detection Algorithm Utilizing Power Level Monitoring

  • Wellawatta, Thusitha;Seo, Young-Tae;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.136-137
    • /
    • 2017
  • Maximum power point tracking (MPPT) under partial shading condition (PSC) is a challenging process in the PV array system. The shaded PV panel makes different peak patterns on the P-V curve and misguides the MPPT algorithm. Various kinds of global MPP (GMPP) detecting algorithms are used to overcome this issue. Generally, too frequent execution of GMPP tracking algorithm reduces the achievable power of PV panel due to time spent on the scanning process. Thus, partial shading detection algorithm is essential for efficient utilization of solar energy source. While conventional method only detects fast shading patterns, the proposed algorithm always shows superb performance regardless of the speed of partial shading patterns.

  • PDF

Optimum solar energy harvesting system using artificial intelligence

  • Sunardi Sangsang Sasmowiyono;Abdul Fadlil;Arsyad Cahya Subrata
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.996-1006
    • /
    • 2023
  • Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.