• Title/Summary/Keyword: Fast walking

Search Result 104, Processing Time 0.03 seconds

Measurement of Energy Expenditure Through Treadmill-based Walking and Self-selected Hallway Walking of College Students - Using Indirect Calorimeter and Accelerometer (대학생의 트레드밀 걷기활동과 자율적 걷기활동을 통한 에너지소비량 측정 - 간접열량계와 가속도계를 이용하여 -)

  • Kim, Ye-Jin;Wang, Cui-Sang;Kim, Eun-Kyung
    • Korean Journal of Community Nutrition
    • /
    • v.21 no.6
    • /
    • pp.520-532
    • /
    • 2016
  • Objectives: The objective of this study was to assess energy expenditure and metabolic cost (METs) of walking activities of college students and to compare treadmill based walking with self-selected hallway walking. Methods: Thirty subjects (mean age $23.4{\pm}1.6years$) completed eight walking activities. Five treadmill walking activities (TW2.4, TW3.2, TW4.0, TW4.8, TW5.6) were followed by three self-selected hallway walking activities, namely, walk as if you were walking and talking with a friend: HWL (leisurely), walk as if you were hurrying across the street at a cross-walk: HWB (brisk) and walk as fast as you can but do not run: HWF (fast) were performed by each subject. Energy expenditure was measured using a portable metabolic system and accelerometers. Results: Except for HWF (fast) activity, energy expenditures of all other walking activities measured were higher in male than in female subjects. The lowest energy expenditure and METs were observed in TW2.4 ($3.65{\pm}0.84kcal/min$ and $2.88{\pm}0.26METs$ in male), HWL (leisurely) ($2.85{\pm}0.70kcal/min$ and $3.20{\pm}0.57METs$ in female), and the highest rates were observed in HWF (fast) ($7.72{\pm}2.81kcal/min$, $5.84{\pm}1.84METs$ in male, $6.65{\pm}1.57kcal/min$, $7.13{\pm}0.68METs$ in female). Regarding the comparison of treadmill-based walking activities and self-selected walking, the energy expenditure of HWL (leisurely) was not significantly different from that of TW2.4. In case of male, no significant difference was observed between energy costs of HWB (brisk), HWF (fast) and TW5.6 activities, whereas in female, energy expenditures during HWB (brisk) and HWF (fast) were significantly different from that of TW5.6. Conclusions: In this study, we observed that energy expenditure from self-selected walking activities of college students was comparable with treadmill-based activities at specific speeds. Our results suggested that a practicing leisurely or brisk walking for a minimum of 150 minutes per week by both male and female college students enable them to meet recommendations from the Physical activity guide for Koreans.

Impact Power Characteristics by Walking for Adults (성인 보행에 따른 충격력 특성에 관한 연구)

  • Kim, Kyoung-Woo;Choi, Hyoun-Jung;Choi, Gyoung-Seok;Kang, Jae-Sik;Yang, Kwan-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.800-803
    • /
    • 2005
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. Running and jumping impact sound by child and walking by adult are one of the most irritating noises in an apartment buildings. It's necessary to know that the impact power characteristics of real impact source in an apartment buildings. This study aims to investigate the impact power and impact time of normal walking and fast walking for 62 adults. It is shown that when the weight of the person increase, the maximum impact power increases. The impact power waveform for the adults walking varies for subjects walking types. The normal walking impact power lower than that of fast walking and impact time is higher than that of fast walking. The range of the impact power generated by adults walking is less than 1000 N.

  • PDF

A Hexapod Robot that can Walk Fast (빠른 보행이 가능한 6족 로봇)

  • Seo, Hyeon Se;Sung, Young Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.536-543
    • /
    • 2013
  • In this paper, we propose a new type of hexapod robot that can walk fast. Most of the conventional hexapod robots are either rectangular type of hexagonal type. Those robots have drawbacks in the speed and stability of walking. The proposed robot has six legs, one fore leg, one hind leg, two left legs and two right legs. The proposed robot forms relatively wide supporting polygons along the walking direction, so it can walk very fast stably. We implemented the proposed hexapod robot and showed the feasibility of the robot by 3+3 walking experiment and 2+4 walking experiment.

Effects of Walking Exercise Intensities on Fatigue, Serum Lipids and Immune Function among Middle-Aged Women (걷기운동의 강도가 중년여성의 피로, 혈중지질, 면역기능에 미치는 영향)

  • Lee, Jung-In
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.1
    • /
    • pp.94-102
    • /
    • 2006
  • Purpose: The purpose of this study was to confirm the effects of a moderate and fast walking exercise program on middle-aged women's fatigue, serum lipids and immunoglobulins. Method: A non-equivalent control group pretest-posttest design was used for this study. The experiment was conducted for 10 weeks from May 17th to July 25th, 2004 with 44 middle-aged women, consisting of 16 for the moderate walking group, 15 for the fast walking group and 13 for the control group. Result: Walking exercise at both a moderate and fast speed was effective in middle-aged women in reducing fatigue and serum lipids. It was also revealed that extended periods of exercise was more effective in decreasing fatigue while for reducing serum lipid, high intensity exercise was more effective. In this study, serum immunoglobulins were reduced after moderate and fast walking exercise but its cause was not fully understood so further research is needed. Conclusion: This study helps us recognize the importance of regular exercise and promotes motivation to exercise for a healthy life among middle-aged women.

Approach toward footstep planning considering the walking period: Optimization-based fast footstep planning for humanoid robots

  • Lee, Woong-Ki;Kim, In-Seok;Hong, Young-Dae
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.471-482
    • /
    • 2018
  • This paper proposes the necessity of a walking period in footstep planning and details situations in which it should be considered. An optimization-based fast footstep planner that takes the walking period into consideration is also presented. This footstep planner comprises three stages. A binary search is first used to determine the walking period. The front stride, side stride, and walking direction are then determined using the modified rapidly-exploring random tree algorithm. Finally, particle swarm optimization (PSO) is performed to ensure feasibility without departing significantly from the results determined in the two stages. The parameters determined in the previous two stages are optimized together through the PSO. Fast footstep planning is essential for coping with dynamic obstacle environments; however, optimization techniques may require a large computation time. The two stages play an important role in limiting the search space in the PSO. This framework enables fast footstep planning without compromising on the benefits of a continuous optimization approach.

Effects of Isokinetic Eccentric Training on Lower Extremity Muscle Activation and Walking Velocity in Stroke Patients

  • Park, Seung-Kyu;Kim, Je-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.4
    • /
    • pp.190-195
    • /
    • 2015
  • Purpose: The aim of this study was to determine the effects of isokinetic eccentric training (IET) on lower extremity muscle activation and walking velocity according to slow velocity and fast velocity of isokinetic eccentric training in stroke patients. Methods: Thirty subjects were randomly divided into three groups: experimental group I (n=10), group II (n=10), and control group III (n=10). Each group was provided intervention under three conditions, as follows: isokinetic eccentric training + slow velocity (group I), isokinetic eccentric training + fast velocity (group II), and sit to stand training (group III). The training program was conducted for eight weeks (five times per week; 30 minutes per day). Subjects were measured on lower extremity muscle (vastus lateralis, vastus medialis, gastrocnemius) activation and walking velocity. Analysis of covariance (ANCOVA) were performed for comparison of lower extremity muscle activation and walking velocity between different intervention methods. Results: Significant difference in lower extremity muscle activation and walking velocity was observed in experimental group I and group II compared with the control group III (p<0.01). Results of post-hoc analysis showed a significant in lower extremity muscle activation and walking velocity in group I compared with group II and group III. Conclusion: Findings of this study suggest that slow velocity and fast velocity using isokinetic eccentric training may have a beneficial effect on improvement of lower extremity muscle activation and walking velocity in stroke patients.

Classification of walking patterns using acceleration signal (가속도 신호를 이용한 걸음걸이 패턴 분류)

  • Jo, Heung-Kuk;Ye, Soo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1901-1906
    • /
    • 2010
  • This classification of walking patterns is important and many kinds of applications. Therefore, we attempted to classify walking on level ground from slow walking to fast walking using a waist acceleration signal. A tri-axial accelerometer was fixed to the subject's waist and the three acceleration signals were recorded by bluetooth module at a sampling rate of 100 Hz eleven healthy. The data were analyzed using discrete wavelet transform. Walking patterns were classified using two parameters; One was the ratio between the power of wavelet coefficients which were corresponded to locomotion and total power in the anteroposterior direction (RPA). The other was the ratio between root mean square of wavelet coefficients at the anteroposterior direction and that at the vertical direction(RAV). Slow walking could be distinguished by the smallest value in RPA from other walking pattern. Fast walking could be discriminated from level walking using RAV. It was possible to classify the walking pattern using acceleration signal in healthy people.

Effects of Cognitive-Motor Interference on Cognitive Tasks Requiring Different Types of Concentration During Preferred and Fast Walking in Stroke Patients

  • Choo, Yeon-Seung;Kim, Mi-Sun;Choi, Jong-Duk
    • Physical Therapy Korea
    • /
    • v.21 no.4
    • /
    • pp.34-39
    • /
    • 2014
  • The purpose of this study was to examine the effect of three cognitive tasks on gait at a preferred walking speed, and at a fast speed, using dual-task methodology. A total of 29 stroke patients participated in the study. All 29 subjects performed 2 motor tasks (10-meter walk task and timed up and go task each at a preferred and a fast speed) and three cognitive tasks [Stroop, word list generation (WLG), serial subtraction (SS)] under dual-task conditions [cognitive-motor interference (CMI)] in a randomized order. Gait speeds were measured in six different conditions. A repeated-measure analysis of variance was employed to compare the results of the Stroop training, WLG, and SS tasks during preferred and fast walking. A Bonferroni adjustment use for post hoc analysis. The level of statistical significance was set at ${\alpha}=.05$. A CMI effect occurred for performance of a 10-meter walking task at two different speed and a cognitive task (p<.05). Stroop had a significantly greater effect than SS and WLG (p<.05). The timed up and go task was affected when performed with fast walking speed during Stroop cognitive task (p<.05), but was not affected if performed with preferred walking speed during a cognitive task (p>.05). This study showed that CMI of Stroop can be used as a rehabilitation program for stroke patients.

A New Type of a Quadruped Robot (새로운 형태의 4족 보행 로봇)

  • Sung, Young-Whee;Seo, Hyeon-Se
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • Most of the existing multiped walking robots are biomimetic, i.e. they are designed to have the shapes of living things such as animals or insects. Even though those robots are familiar to us, they have some drawbacks in the view point of walking efficiency such as stability and walking speed. In this paper, we introduce a quadruped walking robot that can perform fast and stable walking by virtue of its distinctive leg positions. The proposed quadruped robot has a foreleg, a hindleg, a left leg, and a right leg. In the conventional robots, dynamic walking is needed to increase walking speed. Dynamic walking is difficult to be accomplished and is apt to be unstable. The proposed robot can move its legs in a manner that its center of gravity is always laid in the supporting polygon, so it can perform fast and stable walking without dynamic walking.

Walking Motion Planning for Quadruped Pet Robot (4족 애완로봇을 위한 보행운동 계획)

  • Yi, Soo-Yeong;Choi, Dae-Sung;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.626-633
    • /
    • 2009
  • A motion planning algorithm is presented in this paper for a commercialized quadruped walking of robot pet. Stable walking is the basic requirement for a commercial-purpose legged robot. In order to secure the walking stability, modified body sway to the centroid of support polygon is addressed. By representation of walking motion with respect to the world coordinate system rather than body coordinate, it is possible to design the several gaits in unified fashion. The initial gait posture is introduced to maximize the stride and to achieve fast walking. The proposed walking motion planning is verified through computer simulation and experiments.