• Title/Summary/Keyword: Fast reactor design

Search Result 173, Processing Time 0.024 seconds

Supercritical CO2-cooled fast reactor and cold shutdown system for ship propulsion

  • Kwangho Ju;Jaehyun Ryu;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1022-1028
    • /
    • 2024
  • A neutronics study of a supercritical CO2-cooled fast reactor core for nuclear propulsion has been performed in this work. The thermal power of the reactor core is 30 MWth and a ceramic UO2 fuel can be used to achieve a 20-year lifetime without refueling. In order to make a compact core with inherent safety features, the drum-type reactivity control system and folding-type shutdown system are adopted. In addition, we suggest a cold shutdown system using gadolinium as a spectral shift absorber (SSA) against flooding. Although there is a penalty of U-235 enrichment for the core embedded with the cold shutdown system, it effectively mitigates the increment of reactivity at the flooding of seawater. In this study, the neutronics analyses have been performed by using the continuous energy Monte Carlo Serpent 2 code with the evaluated nuclear data file ENDF/B-VII.1 Library. The supercritical CO2-cooled fast reactor core is characterized in view of important safety parameters such as the reactivity worth of reactivity control systems, fuel temperature coefficient (FTC), coolant temperature coefficient (CTC), and coolant temperature-density coefficient (CTDC). We can say that the suggested core has inherent safety features and enough flexibility for load-following operation.

Conceptual design of a copper-bonded steam generator for SFR and the development of its thermal-hydraulic analyzing code

  • Im, Sunghyuk;Jung, Yohan;Hong, Jonggan;Choi, Sun Rock
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2262-2275
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) studied the sodium-water reaction (SWR) minimized steam generator for the safety of the sodium-cooled fast reactor (SFR), and selected the copper bonded steam generator (CBSG) as the optimal concept. This paper introduces the conceptual design of the CBSG and the development of the CBSG sizing analyzer (CBSGSA). The CBSG consists of multiple heat transfer modules with a crossflow heat transfer configuration where sodium flows horizontally and water flows vertically. The heat transfer modules are stacked along a vertical direction to achieve the targeted large heat transfer capacity. The CBSGSA code was developed for the thermal-hydraulic analysis of the CBSG in a multi-pass crossflow heat transfer configuration. Finally, we conducted a preliminary sizing and rating analysis of the CBSG for the trans-uranium (TRU) core system using the CBSGSA code proposed by KAERI.

Risk-informed design optimization method and application in a lead-based research reactor

  • Jiaqun Wang;Qianglong Wang;Jinrong Qiu;Jin Wang;Fang Wang;Yazhou Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2047-2052
    • /
    • 2023
  • Risk-informed approach has been widely applied in the safety design, regulation, and operation of nuclear reactors. It has been commonly accepted that risk-informed design optimization should be used in the innovative reactor designs to make nuclear system highly safe and reliable. In spite of the risk-informed approach has been used in some advanced nuclear reactors designs, such as Westinghouse IRIS, Gen-IV sodium fast reactors and lead-based fast reactors, the process of risk-informed design of nuclear reactors is hardly to carry out when passive system reliability should be integrated in the framework. A practical method for new passive safety reactors based on probabilistic safety assessment (PSA) and passive system reliability analyze linking is proposed in this paper. New three-dimension frequency-consequence curve based on risk concept with three variables is used in this method. The proposed method has been applied to the determination optimization of design options selection in a 10 MWth lead-based research reactor(LR) to obtain one optimized system design in conceptual design stage, using the integrated reliability and probabilistic safety assessment program RiskA, and the computation resources and time consumption in this process was demonstrated reasonable and acceptable.

Investigation on Design Requirements of Vent Lines for Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor (소듐냉각고속로 원형로 소듐-물 반응 압력완화계통의 배출배관 설계요건 연구)

  • Park, Sun Hee;Han, Ji-Woong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.388-403
    • /
    • 2018
  • We investigated design requirements of vent lines for Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor. We developed design requirements of areas of the rupture disks of the steam generator, a diameter of the gas vent line of the sodium dump tank, a diameter of the gas vent line of the water dump tank, a diameter of the water dump line of the steam generator. With the design requirements, we calculated the time to vent fluid inside the steam generator and analyzed the transient pressure behavior, also evaluated the close pressure value of the isolation valve of the water dump line. Our results are expected to be used as basis information to design Sodium-Water Reaction Pressure Relief System of Prototype Generation IV Sodium-Cooled Fast Reactor.

A MIXED CORE FOR SUPERCRITICAL WATER-COOLED REACTORS

  • Cheng, Xu;Liu, Xiao-Jing;Yang, Yan-Hua
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.117-126
    • /
    • 2008
  • In this paper, a new reactor core design is proposed on the basis of a mixed core concept consisting of a thermal zone and a fast zone. The geometric structure of the fuel assembly of the thermal zone is similar to that of a conventional thermal supercritical water-cooled reactor(SCWR) core with two fuel pin rows between the moderator channels. In spite of the counter-current flow mode, the co-current flow mode is used to simplify the design of the reactor core and the fuel assembly. The water temperature at the exit of the thermal zone is much lower than the water temperature at the outlet of the pressure vessel. This lower temperature reduces the maximum cladding temperature of the thermal zone. Furthermore, due to the high velocity of the fast zone, a wider lattice can be used in the fuel assembly and the nonuniformity of the local heat transfer can be minimized. This mixed core, which combines the merits of some existing thermal SCWR cores and fast SCWR cores, is proposed for further detailed analysis.

Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) with PBO Reflector

  • Kim, Chihyung;Hartanto, Donny;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.351-359
    • /
    • 2016
  • The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

MGGC2.0: A preprocessing code for the multi-group cross section of the fast reactor with ultrafine group library

  • Kui Hu;Xubo Ma;Teng Zhang;Xuan Ma;Zifeng Huang;Yixue Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2785-2796
    • /
    • 2023
  • How to generate the precise broad group cross section is important for the fast reactor design. In this study, a fast reactor multi-group cross-section generation code MGGC2.0 are developed in-house for processing ultrafine group MATXS format library. Validation and verification are performed for MGGC2.0 code by applying the benchmarks of ICSBEP handbook, and the results of MGGC2.0 agree well with that of MCNP. The consistent PN method with critical buckling search is in good agreement that condensed with TWODANT flux and flux moment for the inner core and outer core region. For the radial blanket and reflector, two region approximation method has been applied in MGGC2.0 by using collision Probability Method neutron flux solver. The RBEC-M benchmark was used to verify the power distribution calculation, and the relative error of power distribution comparison with the reference are less than 0.8% in the fuel region and the maximum relative error is 5.58% in the reflector region. Therefore, the precise broad cross section can be generated by MGGC2.0 for fast reactor.

Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

  • Yoo, Jaewoon;Chang, Jinwook;Lim, Jae-Yong;Cheon, Jin-Sik;Lee, Tae-Ho;Kim, Sung Kyun;Lee, Kwi Lim;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1059-1070
    • /
    • 2016
  • The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.

ASSESSMENT OF GAS COOLED FAST REACTOR WITH INDIRECT SUPERCRITICAL $CO_2$ CYCLE

  • Hejzlar, P.;Dostal, V.;Driscoll, M.J.;Dumaz, P.;Poullennec, G.;Alpy, N.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.109-118
    • /
    • 2006
  • Various indirect power cycle options for a helium cooled gas cooled fast reactor (GFR) with particular focus on a supercritical $CO_2(SCO_2)$ indirect cycle are investigated as an alternative to a helium cooled direct cycle GFR. The balance of plant (BOP) options include helium-nitrogen Brayton cycle, supercritical water Rankine cycle, and $SCO_2$ recompression Brayton power cycle in three versions: (1) basic design with turbine inlet temperature of $550^{\circ}C$, (2) advanced design with turbine inlet temperature of $650^{\circ}C$ and (3) advanced design with the same turbine inlet temperature and reduced compressor inlet temperature. The indirect $SCO_2$ recompression cycle is found attractive since in addition to easier BOP maintenance it allows significant reduction of core outlet temperature, making design of the primary system easier while achieving very attractive efficiencies comparable to or slightly lower than, the efficiency of the reference GFR direct cycle design. In addition, the indirect cycle arrangement allows significant reduction of the GFR &proximate-containment& and the BOP for the $SCO_2$ cycle is very compact. Both these factors will lead to reduced capital cost.

Application of the SCIANTIX fission gas behaviour module to the integral pin performance in sodium fast reactor irradiation conditions

  • Magni, A.;Pizzocri, D.;Luzzi, L.;Lainet, M.;Michel, B.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2395-2407
    • /
    • 2022
  • The sodium-cooled fast reactor is among the innovative nuclear technologies selected in the framework of the development of Generation IV concepts, allowing the irradiation of uranium-plutonium mixed oxide fuels (MOX). A fundamental step for the safety assessment of MOX-fuelled pins for fast reactor applications is the evaluation, by means of fuel performance codes, of the integral thermal-mechanical behaviour under irradiation, involving the fission gas behaviour and release in the fuel-cladding gap. This work is dedicated to the performance analysis of an inner-core fuel pin representative of the ASTRID sodium-cooled concept design, selected as case study for the benchmark between the GERMINAL and TRANSURANUS fuel performance codes. The focus is on fission gas-related mechanisms and integral outcomes as predicted by means of the SCIANTIX module (allowing the physics-based treatment of inert gas behaviour and release) coupled to both fuel performance codes. The benchmark activity involves the application of both GERMINAL and TRANSURANUS in their "pre-INSPYRE" versions, i.e., adopting the state-of-the-art recommended correlations available in the codes, compared with the "post-INSPYRE" code results, obtained by implementing novel models for MOX fuel properties and phenomena (SCIANTIX included) developed in the framework of the INSPYRE H2020 Project. The SCIANTIX modelling includes the consideration of burst releases of the fission gas stored at the grain boundaries occurring during power transients of shutdown and start-up, whose effect on a fast reactor fuel concept is analysed. A clear need to further extend and validate the SCIANTIX module for application to fast reactor MOX emerges from this work; nevertheless, the GERMINAL-TRANSURANUS benchmark on the ASTRID case study highlights the achieved code capabilities for fast reactor conditions and paves the way towards the proper application of fuel performance codes to safety evaluations on Generation IV reactor concepts.