• Title/Summary/Keyword: Fast handovers

Search Result 32, Processing Time 0.02 seconds

Implementation of Role-based Command Hierarchy Model for Actor Cooperation (ROCH: 워게임 모의개체 간 역할기반 협력 구현 방안 연구)

  • Kim, Jungyoon;Kim, Hee-Soo;Lee, Sangjin
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.107-118
    • /
    • 2015
  • Many approaches to agent collaboration have been introduced in military war-games, and those approaches address methods for simulation entity (actor) collaboration within a team to achieve given goals. To meet fast-changing battlefield situations, an actor must be loosely coupled with their tasks and be able to take over the role of other actors if necessary to reflect role handovers occurring in real combat. Achieving these requirements allows the transfer of tasks assigned one actor to another actor in circumstances when that actor cannot execute its assigned role, such as when destroyed in action. Tight coupling between an actor and its tasks can prevent role handover in fast-changing situations. Unfortunately, existing approaches and war-game strictly assign tasks to actors during design, therefore they prevent the loose coupling. To overcome these shortcomings, our Role-based Command Hierarchy (ROCH) model dynamically assigns roles to actors based on their situation at runtime. In the model, "Role" separates actors from their tasks. In this paper, we implement the ROCH model as a component that uses a publish-subscribe pattern to handle the link between an actor and the roles of its subordinates (other actors).

Enhanced PMIPv6 Route Optimization Handover using PFMIPv6 in Mobile Cloud Environment (모바일 클라우드 환경에서 PFMIPv6를 이용한 향상된 PMIPv6 경로 최적화 핸드오버 기법)

  • Na, Je-Gyun;Seo, Dae-Hee;Nah, Jae-Hoon;Mun, Young-Song
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.17-23
    • /
    • 2010
  • In the mobile cloud computing, the mobile node should request and receive the services while being connected. In PMIPv6, all packets sent by mobile nodes or correspondent nodes are transferred through the local mobility anchor. This unnecessary detour still results in high delivery latency and significant processing cost. Several PMIPv6 route optimization schemes have been proposed to solve this issue. However, they also suffer from the high signaling costs and handover latency when determining the optimized path. We propose the route optimization handover scheme which adopts the prediction algorithm in PFMIPv6. In the proposed scheme, the new mobile access gateway establishes the bi-directional tunnel with the correspondent node's MAG using the context message when the mobile node's handover is imminent. This tunnel may eliminate the need of separate route optimization procedure. Hence, the proposed scheme can reduce the signaling cost than other conventional schemes do. Analytical performance evaluation is preformed to show the effectiveness of the proposed scheme. The result shows that our scheme is more effective than other schemes.