• Title/Summary/Keyword: Fast algorithm

Search Result 3,700, Processing Time 0.025 seconds

IPv6 Global Address Configuration Algorithm for Internet Interconnection in MANET (MANET기반 Internet 연결에서 IPv6 Global Address 할당 방법)

  • Hwang, Soon-Woo;Park, Sung-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.68-74
    • /
    • 2006
  • The MANET(Mobile Ad Hoc Network) is an independent network that is oranized by only Mobile Hosts. MANET guarantees the mobility of the node and does not need a backbone network or a base station. Recently, there is a strong demand to connect MANET to the Internet. For the interconnection between MANET and Internet, Mobile hosts of MANET must have global IP address. The well known scheme of the address configuration for MANET is SAA(Stateless Address Autoconfiguration). SAA configurated IP address by node itself. The advantage of SAA is not requiring any server for address configuration. However the SAA has problems of unstable and inefficient interconnection on the AD Hoc Network. To solve this problem we propose a method that assigns an IPv6 Global address to the node through the Internet Gateway. The format of assigned IPv6 address is also defined. The simulation result demonstrates that the proposed method can support the host for fast getting of global IPv6 Address and Mobile IPv6 efficiently.

3D Reconstruction using the Key-frame Selection from Reprojection Error (카메라 재투영 오차로부터 중요영상 선택을 이용한 3차원 재구성)

  • Seo, Yung-Ho;Kim, Sang-Hoon;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.38-46
    • /
    • 2008
  • Key-frame selection algorithm is defined as the process of selecting a necessary images for 3D reconstruction from the uncalibrated images. Also, camera calibration of images is necessary for 3D reconstuction. In this paper, we propose a new method of Key-frame selection with the minimal error for camera calibration. Using the full-auto-calibration, we estimate camera parameters for all selected Key-frames. We remove the false matching using the fundamental matrix computed by algebraic deviation from the estimated camera parameters. Finally we obtain 3D reconstructed data. Our experimental results show that the proposed approach is required rather lower time costs than others, the error of reconstructed data is the smallest. The elapsed time for estimating the fundamental matrix is very fast and the error of estimated fundamental matrix is similar to others.

Implementation of the SIMT based Image Signal Processor for the Image Processing (영상처리를 위한 SIMT 기반 Image Signal Processor 구현)

  • Hwang, Yun-Seop;Jeon, Hee-Kyeong;Lee, Kwan-ho;Lee, Kwang-yeob
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.89-93
    • /
    • 2016
  • In this paper, we proposed SIMT based Image Signal Processor which can apply various image preprocessing algorithms and allow parallel processing of application programs such as image recognition. Conventional ISP has the hard-wired image enhancement algorithm of which the processing speed is fast, but there was difficult to optimize performance depending on various image processing algorithms. The proposed ISP improved the processing time applying SIMT architecture and processed a variety of image processing algorithms as an instruction based processor. We used Xilinx Virtex-7 board and the processing time compared to cell multicore processor, ARM Cortex-A9, ARM Cortex-A15 was reduced by about 71 percent, 63 percent and 33 percent, respectively.

Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering (지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할)

  • Alamgir, Nyma;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes an image segmentation framework that modifies the objective function of Fuzzy C-Means (FCM) to improve the performance and computational efficiency of the conventional FCM-based image segmentation. The proposed image segmentation framework includes a locally weighted fuzzy c-means (LWFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors. Distance between a center pixel and a neighboring pixels are calculated within a window and these are basis for determining weights to indicate the importance of the memberships as well as to improve the clustering performance. We analyzed the segmentation performance of the proposed method by utilizing four eminent cluster validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), Xie-Bdni function ($V_{xb}$) and Fukuyama-Sugeno function ($V_{fs}$). Experimental results show that the proposed LWFCM outperforms other FCM algorithms (FCM, modified FCM, and spatial FCM, FCM with locally weighted information, fast generation FCM) in the cluster validity functions as well as both compactness and separation.

Method of Location Decision far a Transfer Center Distributing a Necessary Resource Item while Considering Characteristics of the Material in Wartime (전시 군수물자의 효율적 분배와 수송을 위한 TC 위치선정 방법론 연구)

  • Jung, Byung-Ho;Kim, Ik-Ki
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.2
    • /
    • pp.1-14
    • /
    • 2009
  • During wartime, the Air Force have to plan where, and how much, and what need to be distributed to surrounding local area from a chosen central bases. Each base, which has surplus more than needed amount of a certain material collected from near area of the base, is expected to distribute such surplus to other bases in shortage of it. By sending such surplus to other bases in shortage of the material, every base may get sufficient amount of all kinds of materials needed for each base during wartime. Because number of items of materials needed in each military bases during wartime are usually quite large and the frequencies of delivery from a place to other place are also pretty large if each item is delivered from a surplus place to other places in shortage, the Head Quarter of Air Force or the Logistics Command will face to difficulty to decide a reasonable delivery plan between bases for efficient and fast allocation of all materials needed to all bases during wartime. Therefore, this study suggests a solving algorithm with an established TC (transfer center: collecting and distributing center for all materials) to solve such a distribution and transportation problem.

Full Data-rate Viterbi Decoder for DAB Receiver (최대 데이터율을 지원하는 DAB 수신기용 Viterbi 디코더의 설계)

  • 김효원;구오석;류주현;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.601-609
    • /
    • 2002
  • The efficient Viterbi decoder that supports full data-rate output of DAB system was proposed. Viterbi decoder consumes lots of computational load and should be designed to be fast specific hardware. In this paper, SST scheme was adopted for Viterbi decoder with puncturing to reduced the power consumption. Puncturing vector tables are modified and re-arranged to be designed by a hardwired logic to save the system area. New re-scaling scheme which uses the fact that the difference of the maximum and minimum of the path metric values is bounded is proposed. The proposed re-scaling scheme optimizes the wordlength of path metric memory and greatly reduces the computational load for re-scaling by controlling MSB of path metric memory. Another saving of computation is done by proposed algorithm for branch metric calculation, which makes use of pre-calculated metric values. The designed Viterbi decoder was synthesized using SAMSUNG 0.35$\mu$ standard cell library and occupied small area and showed lower power consumption.

Load Balancing Scheme in Heterogeneous Multiple AS Environment based on IMS Network (IMS 네트워크 기반 이종 다중 AS 환경에서의 부하 분산 기법)

  • Yoo, Yung-Jun;Cho, Yoon-Sang;Song, Min-Do;Kim, Moo-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.250-258
    • /
    • 2011
  • In this paper we propose a load balancing scheme for heterogeneous multiple AS's (Application Server) in IMS (IP Multimedia Subsystem) based network. In IMS network, to perform load balancing among multiple ASs with different registration pattern, different weight value should be set for each AS. In previous systems, there exists an inconvenience that the weight value should be set manually by the operator after monitoring the result. In this paper we propose a method to calculate optimal weight in automatic manner and to perform load balancing simultaneously. We also propose a simplified algorithm to reduce calculation in specific situation and present a way to apply our proposed scheme in adaptive manner according to the situation. Through simulation result, we verify that our proposing scheme outperforms previous schemes in load balancing and adjusts well to the change of the system in automatic manner with fast convergence.

A Study on the Shape-Based Motion Estimation For MCFI (MCFI 구현을 위한 형태 기반 움직임 예측에 관한 연구)

  • Park, Ju-Hyun;Kim, Young-Chul;Hong, Sung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.278-286
    • /
    • 2010
  • Motion Compensated Frame Interpolation(MCFI) has been used to reduce motion jerkiness for dynamic scenes and motion blurriness for LCD-panel display as post processing for large screen and full HD(high definition) display. Conventionally, block matching algorithms (BMA) are widely used to do motion estimation for simplicity of implementation. However, there are still several drawbacks. So in this paper, we propose a novel shape-based ME algorithm to increase accuracy and reduce ME computational cost. To increase ME accuracy, we do motion estimation based on shape of moving objects. And only moving areas are included for motion estimation to reduce computational cost. The results show that the computational cost is 25 % lower than full search BMA, while the performance is similar or is better, especially in the fast moving region.

Privacy-Preserving Credit Scoring Using Zero-Knowledge Proofs (영지식 증명을 활용한 프라이버시 보장 신용평가방법)

  • Park, Chul;Kim, Jonghyun;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1285-1303
    • /
    • 2019
  • In the current credit scoring system, the credit bureau gathers credit information from financial institutions and calculates a credit score based on it. However, because all sensitive credit information is stored in one central authority, there are possibilities of privacy violations and successful external attacks can breach large amounts of personal information. To handle this problem, we propose privacy-preserving credit scoring in which a user gathers credit information from financial institutions, calculates a credit score and proves that the score is calculated correctly using a zero-knowledge proof and a blockchain. In addition, we propose a zero-knowledge proof scheme that can efficiently prove committed inputs to check whether the inputs of a zero-knowledge proof are actually provided by financial institutions with a blockchain. This scheme provides perfect zero-knowledge unlike Agrawal et al.'s scheme, short CRSs and proofs, and fast proof and verification. We confirmed that the proposed credit scoring can be used in the real world by implementing it and experimenting with a credit score algorithm which is similar to that of the real world.

3X Serial GF($2^m$) Multiplier Architecture on Polynomial Basis Finite Field (Polynomial basis 방식의 3배속 직렬 유한체 곱셈기)

  • Moon, Sang-Ook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.328-332
    • /
    • 2006
  • Efficient finite field operation in the elliptic curve (EC) public key cryptography algorithm, which attracts much of latest issues in the applications in information security, is very important. Traditional serial finite multipliers root from Mastrovito's serial multiplication architecture. In this paper, we adopt the polynomial basis and propose a new finite field multiplier, inducing numerical expressions which can be applied to exhibit 3 times as much performance as the Mastrovito's. We described the proposed multiplier with HDL to verify and evaluate as a proper hardware IP. HDL-implemented serial GF (Galois field) multiplier showed 3 times as fast speed as the traditional serial multiplier's adding only partial-sum block in the hardware. So far, there have been grossly 3 types of studies on GF($2^m$) multiplier architecture, such as serial multiplication, array multiplication, and hybrid multiplication. In this paper, we propose a novel approach on developing serial multiplier architecture based on Mastrovito's, by modifying the numerical formula of the polynomial-basis serial multiplication. The proposed multiplier architecture was described and implemented in HDL so that the novel architecture was simulated and verified in the level of hardware as well as software.