• Title/Summary/Keyword: Fast Simulation

Search Result 2,365, Processing Time 0.035 seconds

VLSI design of a FNNPDS encoder for vector quantization (벡터양자화를 위한 FNNPDS 인코더의 VLSI 설계)

  • Kim Hyeung-Cheol;Shim Jeong-Bo;Jo Je-Hwang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.83-88
    • /
    • 2005
  • We propose the design method for the VLSI architecture of FNNPDS combined PDS(partial distance search) and FNNS(fast nearest neighbor search), which are used to fast encoding in vector quantization, and obtain the results that FNNPDS(fast nearest neighbor partial distance search) is faster method than the conventional methods by simulation. In simulations, we investigate timing diagrams described searching time of the nearest codevector for an input vector, and compare the average clock cycles per input vector for Lena and Peppers images. According to the result of simulations, the number of the clock cycle of FNNPDS was reduced to $79.2\%\~11.7\%$ as compared with the number using the conventional techniques.

RASE Acquisition Algorithm of Ultra Wideband System for Car Positioning and Traffic Light Control (차량 위치추적기반 교통신호등 제어용 UWB 시스템의 Acquisition 알고리즘 연구)

  • Hwang, In-Kwan;Park, Yun-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.992-998
    • /
    • 2005
  • In this paper, An Ultra Fast Acquisition Algorithm of low transmission rate ultra-wideband(UWB) systems for car positioning and traffic light controling is proposed. Since the acquisition algorithms for CDMA system are not fast enough to access the low transmission rate UWB systems, the new ultra fast acquisition scheme which can be implemented with low cost and simplified circuit is required. The proposed algorithm adopted the Recurrent Sequential Estimation scheme and trinomial M-sequence. Therefore, The proposed scheme can reduce the average acquisition time in $1\~3{\mu}sec$ with simple circuit, even for the UWB systems which use long pseudo-noise(PN) sequence and transmit low power below the FCC EIRP emission limits. The simulation results for the average acquisition time of the proposed scheme are compared with the ones of the existing acquisition schemes.

NUMERICAL ANALYSIS OF THERMAL STRATIFICATION IN THE UPPER PLENUM OF THE MONJU FAST REACTOR

  • Choi, Seok-Ki;Lee, Tae-Ho;Kim, Yeong-Il;Hahn, Dohee
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.191-202
    • /
    • 2013
  • A numerical analysis of thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (~300 seconds). However, transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A nearly homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates. This discrepancy may be due to the shortcoming of the turbulence models available in the CFX-13 code for a natural convection flow with thermal stratification.

Novel Fast Peak Detector for Single- or Three-phase Unsymmetrical Voltage Sags

  • Lee, Sang-Hoey;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.658-665
    • /
    • 2011
  • In the present paper, a novel fast peak detector for single- or three-phase unsymmetrical voltage sags is proposed. The proposed detector is modified from a single-phase digital phase-locked loop based on a d-q transformation using an all-pass filter (APF). APF generates a virtual phase with $90^{\circ}$ phase delay. However, this virtual phase cannot reflect a sudden change of the grid voltage in the moment of voltage sag, which causes a peak value to be significantly distorted and to settle down slowly. Specifically, the settling time of the peak value is too long when voltage sag occurs around a zero crossing, such as phase $0^{\circ}$ and $180^{\circ}$. This paper describes the operating principle of the APF problem and proposes a modified all-pass filter (MAPF) to mitigate the inherent APF problem. In addition, a new fast peak detector using MAPF is proposed. The proposed detector is able to calculate a peak value within 0.5 ms, even when voltage sag occurs around zero crossing. The proposed fast peak detector is compared with the conventional detector using APF. Results show that the proposed detector has faster detection time in the whole phase range. Furthermore, the proposed fast peak detector can be effectively applied to unsymmetrical three-phase voltage sags. Simulation and experimental results verify the advantages of the proposed detector and MAPF.

Study of the Improved Fast Correlation Attack on Stream Ciphers (스트림 암호에 대한 향상된 고속 상관 공격 적용 가능성 연구)

  • Jeong, Ki-Tae;Lee, Yu-Seop;Sung, Jae-Chul;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.5
    • /
    • pp.17-24
    • /
    • 2009
  • Zhang et al. proposed a improved fast correlation attack on stream ciphers at SAC'08[8]. This attack is based on the fast correlation attack proposed at Crypto'00 and combined with FWT(fast Walsh transform). Given various attack environments, they presented complexities and success probabilities of the proposed attack algorithm. However, we found that our simulation results of the proposed attack algorithm are different from them presented in [8]. In this paper, we correct results of the proposed attack algorithm by analyzing it theoretically. And we propose a threshold of valid bias.

Power Cell-based Pulsed Power Modulator with Fast Rise Times (빠른 상승 시간을 갖는 파워 셀 기반 펄스 파워 모듈레이터)

  • Lee, Seung-Hee;Song, Seung-Ho;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2021
  • This paper describes the design of a power cell-based pulsed power modulator with fast rise times. The pulse-generating section of the pulse power modulator is a series stack of power cells. Each power cell is composed of a storage capacitor, a pulse switch, and a bypass diode. When the pulse switches are turned on, the capacitors are connected in series and the sum of voltages is applied to the load. For output pulses with fast rise times, an IGBT with fast turn-on characteristics is adopted as a pulse switch and the optimized gate driving method is used. Pspice simulation is performed to account for the gate driving method. A 10 kV, 12-power cell-based pulsed power modulator is tested under resistive load and plasma reactor load. The rise times of output pulses less than 20 ns are confirmed, showing that the pulsed power modulator can be effectively applied to pulsed power applications with fast rise times.

Simulation of Capacitively Graded Bushing for Very Fast Transients Generated in a GIS during Switching Operations

  • Rao, M.Mohana;Rao, T. Prasad;Ram, S.S. Tulasi;Singh, B.P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.36-42
    • /
    • 2008
  • In a gas insulated substation (GIS), Very Fast Transient Over-voltages (VFTOs) are generated due to switching operations and ground faults. These fast transients are associated with high frequency components of the order of a few hundreds of MHz. These transients may cause internal faults i.e., layer-to-layer faults or minor faults in a capacitively graded bushing, which is one of the important pieces of terminal equipment for GIS. In the present study, the PSPICE model has been developed to calculate the voltage distribution across the layers of 420kV graded bushing for high frequency pulses of rise time 1 to 50ns, which simulate the VFTO. For this simulation, an equivalent electrical network of bushing with different equivalent layers has been considered. The effect of different equivalent layers modeling circuits on the non-uniform voltage factor has been analysed. The influence of copper strip inductance on voltage distribution across layers has also been analysed for various rise times of high frequency transients. Finally, the leakage current of the bushing is calculated for evaluating the bushing condition under these transients.

Design of a Moving-magnet Electromagnetic Actuator for Fast Steering Mirror through Finite Element Simulation Method

  • Long, Yongjun;Mo, Jinqiu;Wei, Xiaohui;Wang, Chunlei;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.300-308
    • /
    • 2014
  • This paper develops a moving-magnet electromagnetic actuator for fast steering mirror (FSM). The actuator achieves a reasonable compromise between voice coil actuator and piezoelectric actuator. The stroke of the actuator is between the strokes of a piezoelectric actuator and a voice coil actuator, and its force output is a linear function of air gap and excitation current within our FSM travel range. Additionally, the actuator is more reliable than voice coil actuator as the electrical connection in the actuator is static. Analytically modeling the actuator is difficult and time-consuming. Alternatively, numerous finite element simulations are carried out for the actuator analysis and design. According to the design results, a real prototype of the actuator is fabricated. An experimental test system is then built. Using the test system, the force output of the fabricated actuator is evaluated. The test results validate the actuator analysis and design.

Modeling and Analysis of a Novel Two-Axis Rotary Electromagnetic Actuator for Fast Steering Mirror

  • Long, Yongjun;Wang, Chunlei;Dai, Xin;Wei, Xiaohui;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2014
  • This paper focuses on the modeling and analysis a novel two-axis rotary normal-stress electromagnetic actuator with compact structure for fast steering mirror (FSM). The actuator has high force density similar to a solenoid, but its torque output is nearly a linear function of both its driving current and rotation angle, showing that the actuator is ideal for FSM. In addition, the actuator is designed with a new cross topology armature and no additional axial force is generated when the actuator works. With flux leakage being involved in the actuator modeling properly, an accurate analytical model of the actuator, which shows the actuator's linear characteristics, is obtained via the commonly used equivalent magnetic circuit method. Finally, numerical simulation is presented to validate the analytical actuator model. It is shown that the analytical results are in a good agreement with the simulation results.

Fast Analysis of Film Thickness in Spectroscopic Reflectometry using Direct Phase Extraction

  • Kim, Kwangrak;Kwon, Soonyang;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • A method for analysis of thin film thickness in spectroscopic reflectometry is proposed. In spectroscopic reflectometry, there has been a trade-off between accuracy and computation speed using the conventional analysis algorithms. The trade-off originated from the nonlinearity of spectral reflectance with respect to film thickness. In this paper, the spectral phase is extracted from spectral reflectance, and the thickness of the film can be calculated by linear equations. By using the proposed method, film thickness can be measured very fast with high accuracy. The simulation result shows that the film thickness can be acquired with high accuracy. In the simulation, analysis error is lower than 0.01% in the thickness range from 100 nm to 4 um. The experiments also show good accuracy. Maximum error is under $40{\AA}$ in the thickness range $3,000-20,000{\AA}$. The experiments present that the proposed method is very fast. It takes only 2.6 s for volumetric thickness analysis of 640*480 pixels. The study suggests that the method can be a useful tool for the volumetric thickness measurement in display and semiconductor industries.