Journal of the Institute of Electronics Engineers of Korea SD
/
v.47
no.7
/
pp.70-77
/
2010
Motion estimation occupies most of the required computation in video compression, and many fast search algorithms were propsoed to reduce huge computation. SAD (sum-of-absolute difference) calculation is the most computation-intensive process in the motion estimation. Early termination is widely used in SAD calculation, where SAD calculation is terminated and it proceeds to next search position if partial SAD during SAD calculation exceeds current minimum SAD. In this paper, we proposed a modified 3-step search algorithm for effective early termination where only search order of search positions are adaptive rearranged. Simulation results show that the proposed motion estimation algorithm reduces computation by 17~30% over conventional 3-step search algorithm without extra computation, while maintaining same performance.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.12
/
pp.6145-6158
/
2019
It is a challenge for the current security industry to respond to a large number of malicious codes distributed indiscriminately as well as intelligent APT attacks. As a result, studies using machine learning algorithms are being conducted as proactive prevention rather than post processing. The k-NN algorithm is widely used because it is intuitive and suitable for handling malicious code as unstructured data. In addition, in the malicious code analysis domain, the k-NN algorithm is easy to classify malicious codes based on previously analyzed malicious codes. For example, it is possible to classify malicious code families or analyze malicious code variants through similarity analysis with existing malicious codes. However, the main disadvantage of the k-NN algorithm is that the search time increases as the learning data increases. We propose a fast k-NN algorithm which improves the computation speed problem while taking the value of the k-NN algorithm. In the test environment, the k-NN algorithm was able to perform with only the comparison of the average of similarity of 19.71 times for 6.25 million malicious codes. Considering the way the algorithm works, Fast k-NN algorithm can also be used to search all data that can be vectorized as well as malware and SSDEEP. In the future, it is expected that if the k-NN approach is needed, and the central node can be effectively selected for clustering of large amount of data in various environments, it will be possible to design a sophisticated machine learning based system.
완전 탐색 블록 정합 알고리즘(FBMA)은 다양한 움직임 추정 알고리즘 중 최상의 움직임 추정을 할 수 있으나, 방대한 계산량이 실시간 처리의 적용에 장애 요소이다. 본 논문에서는 완전 탐색 블록 정합 알고리즘에 비해 더 낮은 계산량과 유사한 화질을 가지는 새로운 고속 움직임 추정 알고리즘을 제안한다. 제안한 방법에서는 공간적인 상관성을 이용함으로써 적절한 탐색 영역의 크기를 예측할 수 있다. 현재 블록의 움직임 추정을 위하여 이웃 블록이 가지고 있는 움직임과 탐색 영역의 크기를 이용하여 현재 블록의 탐색 영역을 적응적으로 변화시키는 방법이다. 이 예측값으로 현재 블록의 탐색 영역 크기를 결정한 후, FBMA와 같이 이 영역 안의 모든 화소점들에 대하여 현재 블록을 정합하여 움직임 벡터를 추정한다. 컴퓨터 모의 실험 결과 계산량 측면에서 제안 방법이 완전 탐색 블록 정합 알고리즘보다 50%정도 감소하였으며, PSNR 측면에서는 0.08dB에서 1.29dB 정도 감소하는 좋은 결과를 얻었다.Abstract Full search block-matching algorithm (FBMA) was shown to be able to produce the best motion compensated images among various motion estimation algorithms. However, huge computational load inhibits its applicability in real applications. A new motion estimation algorithm with lower computational complexity and good image quality when compared to the FBMA will be presented in this paper. In the proposed method, The appropriate search area can be predicted by using the temporal correlation between neighbouring blocks. For motion estimation of the current block, it is the method changing adjustably search area of current block by using motion and search area size of the neighbouring block. After deciding search area size of the current block with this predicted value, we estimate motion vector that matching current block like the FBMA for every pixel in this area. By the computer simulation the computation amount of the proposed method can be greatly decreased about 50% than that of the FBMA and the good result of the PSNR can be attained.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.2
/
pp.1073-1076
/
2005
Since the size of biosequence database grows exponentially every year, it becomes impractical to use Smith-Waterman algorithm for exact sequence similarity search. For fast sequence similarity search, researchers have been proposed heuristic methods that use the frequency of characters in subsequences. These methods have the defect that different sequences are treated as the same sequence. Because of using only the frequency of characters, the accuracy of these methods are lower than Smith-Waterman algorithm. In this paper, we propose an algorithm which processes query efficiently by indexing the frequency of characters including the positional information of characters in subsequences. The experiments show that our algorithm improve the accuracy of sequence similarity search approximately 5${\sim}$20% than heuristic algorithms using only the frequency of characters.
Many fast block-matching algorithms (BMAs) in motion estimation field reduce computational complexity by screening the number of checking points. Although many fast BMAs reduce computations, sometimes they should endure matching errors in comparison with full-search algorithm (FSA). In this paper, a novel fast BMA for constrained one-bit transform (C1BT)-based motion estimation is proposed in order to decrease the calculations of the block distortion measure. Unlike the classical fast BMAs, the proposed algorithm shows a new approach to reduce computations. It utilizes the binomial distribution based on the characteristic of binary plane which is composed of only two elements: 0 and 1. Experimental results show that the proposed algorithm keeps its peak signal-to-noise ratio (PSNR) performance very close to the FSA-C1BT while the computation complexity is reduced considerably.
The Journal of Korean Institute of Communications and Information Sciences
/
v.30
no.2C
/
pp.10-15
/
2005
In this paper, a simple but fast and reliable technique for the complex dielectric constant measurement of non-magnetic materials is introduced using a measured transmission coefficient (S21) and a genetic algorithm as an inversion process at microwave frequencies. In this experiment, it has been found that the transmission method is less susceptible with the measurement errors than that of the reflection method and the genetic algorithm can be efficiently used as a search technique. The suggested technique is validated with known and unknown conductor-loaded lossy materials and the conductor-loaded PCB at X-band.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.3
/
pp.1348-1375
/
2018
Support Vector Machine (SVM) is a well-known machine learning classification algorithm, which has been widely applied to many data mining problems, with good accuracy. However, SVM classification speed decreases with increase in dataset size. Some applications, like video surveillance and intrusion detection, requires a classifier to be trained very quickly, and on large datasets. Hence, this paper introduces two filter-based instance selection techniques for optimizing SVM training speed. Fast classification is often achieved at the expense of classification accuracy, and some applications, such as phishing and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also introduces two wrapper-based instance selection techniques for improving SVM predictive accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo Search Algorithm and Bat Algorithm. The proposed techniques are validated on three popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the proposed techniques are validated on 20 other datasets provided by UCI data repository. Moreover, statistical analysis is performed and experimental results reveals that the filter-based and wrapper-based techniques significantly improved SVM classification speed. Also, results reveal that the wrapper-based techniques improved SVM predictive accuracy in most cases.
In recent years automatic image indexing and retrieval have been increasingly studied. However, content-based retrieval techniques for general images are still inadequate for many purposes. The novelty and originality of this thesis are the definition and use of a spatial information model as a contribution to the accuracy and efficiency of image search. In addition, the model is applied to represent color and shape image contents as a vector using the method of image features extraction, which was inspired by the previous work on the study of human visual perception. The indexing scheme using the color, shape and spatial model shows the potential of being applied with the well-developed algorithms of features extraction and image search, like ranking operations. To conclude, user can retrieved more similar images with high precision and fast speed using the proposed system.
This paper presents a new method which applies a genetic algorithm(GA) for determining which sectionalizing switch to operate in order to solve the distribution system loss minimization re-configuration problem. The distribution system loss minimization re-configuration problem is in essence a 0-1 planning problem which means that for typical system scales the number of combinations requiring searches becomes extremely large. In order to deal with this problem, a new approach which applies a GA was presented. Briefly, GA are a type of random number search method, however, they incorporate a multi-point search feature. Further, every point is not is not separately and respectively renewed, therefore, if parallel processing is applied, we can expect a fast solution algorithm to result.
We propose a block motion estimation algorithm based on a statistical image feature for video sequences. The statistical feature of the reference block is obtained, then applied to select the candidate starting points (SPs) in the regular starting points pattern (SPP) by comparing the statistical feature of reference block with that of blocks which are spread ower regular SPP. The final SPs are obtained by their Mean Absolute Difference(MAD) value among the candidate SPs. Finally, one of conventional fast search algorithms, such as BRGDS, DS, and three-step search (TSS), has been applied to generate the motion vector of reference block using the final SPs as its starting points. The experimental results showed that the starting points from fine SPs were as dose as to the global minimum as we expected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.