• Title/Summary/Keyword: Fast Search Algorithm

Search Result 530, Processing Time 0.029 seconds

Two-Stage Fast Block Matching Algorithm Using Integral Projections (가산 투영을 이용한 2단계 고속 블록정합 알고리즘)

  • 김준식;박래홍;이병욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.45-55
    • /
    • 1993
  • In this paper, a two-stage block matching algorithm (BMA), which can reduce greatly the computational complexity of the conventional BMAs, is proposed, in which the onedimensional distortion measure based on the integral projection is introduced to determine the candidate motion vectors and then among them a final motion vector is detected based on the conventional two-dimensional distortion measure. Due to the one-dimensional calculation of a distortion measure, the proposed algorithm can reduce the computational complexity of the conventional BMA (full search method with a 16$\times$16 block) by a factor of 4, with its performance comparable to those of the conventional ones. Simulation results based on the original and noisy image sequences are shown. Also the simulation of the proposed method combined with the MPEG (Moving Picture Experts Group) SM3 (Simulation Model Three) is presented. Computer simulation shows that the proposed algorithm is fast with its performance comparable to those of the conventional ones.

  • PDF

Fast Motion and Disparity Estimation Scheme for Multi-view Video Coding (다시점 동영상 부호화를 위한 고속 움직임 및 변이 추정)

  • Kim, Ji-Young;Kim, Yong-Tae;Seo, Jung-Dong;Sohn, Kwang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.417-418
    • /
    • 2006
  • In this paper, we propose a new fast algorithm which reduces search range by checking reliability of predicted vector in multi-view video coding (MVC). Block position matching algorithm is implemented to improve the proposed algorithm. The processing time is decreased by from 40 to 60% in each frame in the proposed algorithm.

  • PDF

Optimal Design of a Hybrid Structural Control System using a Self-Adaptive Harmony Search Algorithm (자가적응 화음탐색 알고리즘을 이용한 복합형 최적 구조제어 시스템 설계)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.301-308
    • /
    • 2018
  • This paper presents an optimal design method of a hybrid structural control system considering multi-hazard. Unlike a typical structural control system in which one system is designed for one specific type of hazard, a simultaneous optimal design method for both active and passive control systems is proposed for the mitigation of seismic and wind induced vibration responses of structures. As a numerical example, an optimal design problem is illustrated for a hybrid mass damper(HMD) and 30 viscous dampers which are installed on a 30 story building structure. In order to solve the optimization problem, a self-adaptive Harmony Search(HS) algorithm is adopted. Harmony Search algorithm is one of the meta-heuristic evolutionary methods for the global optimization, which mimics the human player's tuning process of musical instruments. A self-adaptive, dynamic parameter adjustment algorithm is also utilized for the purpose of broad search and fast convergence. The optimization results shows that the performance and effectiveness of the proposed system is superior with respect to a reference hybrid system in which the active and passive systems are independently optimized.

A Hierarchical Cluster Tree Based Fast Searching Algorithm for Raman Spectroscopic Identification (계층 클러스터 트리 기반 라만 스펙트럼 식별 고속 검색 알고리즘)

  • Kim, Sun-Keum;Ko, Dae-Young;Park, Jun-Kyu;Park, Aa-Ron;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.562-569
    • /
    • 2019
  • Raman spectroscopy has been receiving increased attention as a standoff explosive detection technique. In addition, there is a growing need for a fast search method that can identify raman spectrum for measured chemical substances compared to known raman spectra in large database. By far the most simple and widely used method is to calculate and compare the Euclidean distance between the given spectrum and the spectra in a database. But it is non-trivial problem because of the inherent high dimensionality of the data. One of the most serious problems is the high computational complexity of searching for the closet spectra. To overcome this problem, we presented the MPS Sort with Sorted Variance+PDS method for the fast algorithm to search for the closet spectra in the last paper. the proposed algorithm uses two significant features of a vector, mean values and variance, to reject many unlikely spectra and save a great deal of computation time. In this paper, we present two new methods for the fast algorithm to search for the closet spectra. the PCA+PDS algorithm reduces the amount of computation by reducing the dimension of the data through PCA transformation with the same result as the distance calculation using the whole data. the Hierarchical Cluster Tree algorithm makes a binary hierarchical tree using PCA transformed spectra data. then it start searching from the clusters closest to the input spectrum and do not calculate many spectra that can not be candidates, which save a great deal of computation time. As the Experiment results, PCA+PDS shows about 60.06% performance improvement for the MPS Sort with Sorted Variance+PDS. also, Hierarchical Tree shows about 17.74% performance improvement for the PCA+PDS. The results obtained confirm the effectiveness of the proposed algorithm.

Modified 3-step Search Motion Estimation Algorithm for Effective Early Termination (효과적인 조기 중단 기법을 위한 변형된 3단계 탐색 움직임 추정 알고리즘)

  • Yang, Hyeon-Cheol;Lee, Seong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.70-77
    • /
    • 2010
  • Motion estimation occupies most of the required computation in video compression, and many fast search algorithms were propsoed to reduce huge computation. SAD (sum-of-absolute difference) calculation is the most computation-intensive process in the motion estimation. Early termination is widely used in SAD calculation, where SAD calculation is terminated and it proceeds to next search position if partial SAD during SAD calculation exceeds current minimum SAD. In this paper, we proposed a modified 3-step search algorithm for effective early termination where only search order of search positions are adaptive rearranged. Simulation results show that the proposed motion estimation algorithm reduces computation by 17~30% over conventional 3-step search algorithm without extra computation, while maintaining same performance.

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.

Maximum Power Point Tracking Control Employing Fibonacci Search Algorithm for Photovoltaic Power Generation System

  • Miyatake Masafumi;Kouno Tooru;Nakano Motomu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.622-625
    • /
    • 2001
  • Photovoltaic generation systems need MPPT (Maximum Power Point Tracking) control because the output power depends on the operating voltage and current. Therefore, many researchers propose various types of MPPT control methods. A new MPPT control scheme is proposed in this paper in order to realize higher efficiency with simple calculation. The line search algorithm with fibonacci sequence which is one of the optimizing method is employed for the MPPT. The line search method is modified for real-time operation. The method is verified by simulations and experiments. It is concluded that the scheme can respond fast variation of irradiance.

  • PDF

Search for broadband extended gravitational-wave emission bursts in LIGO S6 in 350-2000 Hz by GPU acceleration

  • van Putten, Maurice H.P.M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.37.3-37.3
    • /
    • 2017
  • We present a novel GPU accelerated search algorithm for broadband extended gravitational-wave emission (BEGE) with better than real-time analyis of H1-L1 LIGO S6 data. It performs matched filtering with over 8 million one-second duration chirps. Parseval's Theorem is used to predict the standard deviation ${\sigma}$ of filter output, taking advantage of near-Gaussian LIGO (H1,L1)-data in the high frequency range of 350-2000 Hz. A multiple of ${\sigma}$ serves as a threshold to filter output back to the central processing unit. This algorithm attains 80% efficiency, normalized to the Fast Fourier Transform (FFT). We apply it to a blind, all-sky search for BEGE in LIGO data, such as may be produced by long gamma-ray bursts and superluminous supernovae. We report on mysterious features, that are excluded by exact simultaneous occurrance. Our results are consistent with no events within a radius of about 20 Mpc.

  • PDF

A VLSI architecture for fast motion estimation algorithm (고속 움직임 추정 알고리즘에 적합한 VLSI 구조 연구)

  • 이재헌;라종범
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.717-720
    • /
    • 1998
  • In this paper, we propose a VLSI architecture for implementing a crecently proposed fast block matching algorithm, which is called the HSBMA3S. The proposed architecture consists of a systolic array based basic unit and two shift register arrays. And it covers a search range of -32 ~+31. By using a basic unit repeatedly, we can redcue the number of gates. To implement the basic unit, we can select one among various conventional systolic arrays by trading-off between speed and hardware cost. In this paper, the architecture for the basic unit is selected so that the hardware cost can be minimized. The proposed architecture is fast enough for low bit-rate applications (frame size of 352x288, 30 frames/sec) and can be implemented by less than 20,000 gates. Moreover, by simply modifying the basic unit, the architecture can be used for the higher bit-rate application of the frame size of 720*480 and 30 frames/sec.

  • PDF

Motion Vector Estimation using T-shape Diamond Search Algorithm (TDS 기법을 이용한 움직임 벡터 추정)

  • Kim, Ki-Young;Jung, Mi-Gyoung
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.309-316
    • /
    • 2004
  • In this paper, we proposed the TDS(T-shape Diamond Search) based on the directions of above, below, left and right points to estimate the motion vector fast and more correctly in this method, we exploit the facts that most motion vectors are enclosed in a circular region with a radius of 2 fixels around search center(0,0). At first, the 4 points in the above, below, left and right around the search center is calculated to decide the point of the MBD(Minimum Block Distortion). And then w. above point of the MBD is checked to calculate the SAD. If the SAD of the above point is less than the previous MBD, this process is repeated. Otherwise, the right and left points of MBD are calculated to decide The points that have the MBD between right point and left point. Above processes are repeated to the predicted direction for motion estimation. Especially, if the motions of image are concentrated in the crossing directions, the points of other directions are omitted. As a result, we can estimate motion vectors fast. Experiments show that the speedup improvement of the proposed algorithm over Diamond Search algorithm(DS) and HEXgon Based Search(HEXBS) can be up to 38∼50% while maintaining similar image Quality.